INJECTIVE COVERS UNDER CHANGE OF RINGS

YEONG MOO SONG AND HAE SIK KIM

Abstract. In [8], Würful gave a characterization of those rings R which satisfy that for every ring extension $R \subset S$, $\text{Hom}_{R}(S, -)$ preserves injective envelopes. In this note, we consider an analogous problem concerning injective covers.

1. Introduction

Let R be a ring with identity 1 and let every module be unitary. We will use the terminology of Enochs [2].

An injective cover of an R-module M is a linear map $\phi : E \to M$ with an injective R-module E such that

(1) for any injective R-module E' and any linear map $\phi' : E' \to M$, the diagram

\[
\begin{array}{ccc}
E' & \longrightarrow & M \\
\downarrow \phi' & & \downarrow \\
E & \xrightarrow{\phi} & M
\end{array}
\]

can be completed to a commutative diagram.

(2) the diagram

\[
\begin{array}{ccc}
E & \longrightarrow & M \\
\downarrow \phi & & \\
E & \xrightarrow{\phi} & M
\end{array}
\]

can only be completed by automorphism of E.

Received June 7, 2000.

2000 Mathematics Subject Classification: 16D50, 16E30.

Key words and phrases: injective cover.
Hence if an injective cover exists, it is unique up to isomorphism. If \(\phi : E \rightarrow M \) satisfies (1), and perhaps not (2), it is called an injective precover. We will sometimes simply say \(E \) is an injective cover (or precover).

The existence of an injective cover is not guaranteed for all cases but every \(R \)-module has an injective cover if and only if the ring \(R \) is Noetherian (see [2, Theorem 2.1]). However, examples of injective covers are hard to come by. The first nontrivial example was constructed by Cheatham, Enochs, and Jenda [1] when \(R = \kappa[x_1, x_2, \cdots, x_n] \), \(n \geq 2 \), where \(\kappa \) is a field. In this case, let \(\mathcal{P} = (x_1, x_2, \cdots, x_n) \), \(R/\mathcal{P} = \kappa \) (with \(x_i \kappa = 0 \) for \(i = 1, 2, \cdots, n \)) and let \(E(\kappa) \) denote the injective envelope of \(\kappa \). Then the natural map \(E(\kappa) \rightarrow E(\kappa)/\kappa \) is an injective cover. This used Northcott’s description [5] of \(E(\kappa) \) as the inverse polynomial ring \(\kappa[x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}] \). Another example is when \(R \) is an \(n \)-dimensional regular local ring with residue field \(\kappa \). If \(n \geq 2 \), then again the natural map \(E(\kappa) \rightarrow E(\kappa)/\kappa \) is an injective cover (see [3, Corollary 4.2]).

Lemma 1.1. (Wakamatsu, [7]; [9, Lemma 2.1.1]) Let \(\phi : E \rightarrow M \) be an injective cover of an \(R \)-module \(M \). Then \(\ker \phi \) has the property that \(\text{Ext}_R^1(\bar{E}, \ker \phi) = 0 \) for any injective \(R \)-module \(\bar{E} \).

Definition 1.2. A special injective precover is defined to be a precover \(\phi : E \rightarrow M \) such that \(\ker \phi \) has the property that \(\text{Ext}_R^1(\bar{E}, \ker \phi) = 0 \) for any injective \(R \)-module \(\bar{E} \).

Proposition 1.3. (Kim, Park, Song [4, Proposition 1.3]) If an \(R \)-module \(M \) has an injective cover and \(\phi : E \rightarrow M \) is an injective precover of \(M \), then the followings are equivalent;

(a) \(\phi \) is an injective cover of \(M \)
(b) There is no nonzero direct summand of \(E \) contained in \(\ker \phi \)
(c) Any linear map \(f : E \rightarrow E \) with \(\phi \circ f = \phi \) is a surjection.

2. Ring extensions and injective precovers

In [8], Würful gave a characterization of those rings \(R \) such that for every ring extension \(R \subset S \), \(\text{Hom}_R(S, -) \) converts injective envelopes of \(R \)-modules into injective envelopes of \(S \)-modules. In this section, we will consider an analogous problem concerning injective covers.
Lemma 2.1. Let \(f : R \to S \) be a ring homomorphism and \(S_R \) flat. If \(sE \) is injective, then \(R_E \) is also injective.

Proof. Let \(g : I \to_R E \) be an \(R \)-linear map for an ideal \(I \) of \(R \). Define \(\alpha : S \otimes_R I \to E \) by \(\alpha(s \otimes x) = sg(x) \). Then \(\alpha \) is \(S \)-linear. Also \(0 \to S \otimes_R I \to S \otimes_R R \) is exact since \(S_R \) is flat. So the diagram

\[
\begin{array}{c}
S \otimes_R I \to S \otimes_R R \\
\downarrow \alpha \\
E
\end{array}
\]

can be completed to a commutative diagram, where \(\iota : I \to R \) is the inclusion map. But the composition map \(I \to S \otimes_R I \to E \) defined by \(\beta(a) = 1 \otimes a \) is equal to the original \(g \). So \(R \to S \otimes_R R \to E \) gives an \(R \)-linear extension.

Remark 2.2. Let \(f : R \to S \) be a ring homomorphism and let \(E \) be an injective \(R \)-module. Then for any \(S \)-module \(M \), \(\text{Ext}^1_S(M, \text{Hom}_R(S, E)) \cong \text{Ext}^1_R(S \otimes M, E) = 0 \), and thus \(\text{Hom}_R(S, E) \) is an injective \(S \)-module.

Theorem 2.3. Let \(f : R \to S \) be a ring homomorphism, \(S_R \) flat and \(\phi : E \to M \) be an injective precover of an \(R \)-module \(M \). Then \(\text{Hom}_R(S, E) \to \text{Hom}_R(S, M) \) is a special injective precover.

Proof. To show that \(\text{Hom}_R(S, E) \to \text{Hom}_R(S, M) \) is an injective precover, it suffices to show that

\[\text{Hom}_S(\bar{E}, \text{Hom}_R(S, E)) \to \text{Hom}_S(\bar{E}, \text{Hom}_R(S, M)) \to 0 \]

is exact for any injective \(S \)-module \(\bar{E} \), or equivalently to show that \(\text{Hom}_R(S \otimes S \bar{E}, E) \to \text{Hom}_R(S \otimes S \bar{E}, M) \to 0 \) is exact. Since \(\phi : E \to M \) is an injective precover of \(M \) and \(S \otimes_S \bar{E} \cong \bar{E} \) is \(R \)-injective by Lemma 2.1, therefore \(\text{Hom}_R(S \otimes_S \bar{E}, E) \to \text{Hom}_R(S \otimes_S \bar{E}, M) \to 0 \) is exact.

Next we need to show that \(\text{Hom}_R(S, \text{Ker}\phi) \) has the property that for any injective \(S \)-module \(E' \), \(\text{Ext}_S^1(E', \text{Hom}_R(S, \text{Ker}\phi)) = 0 \).
Since $\text{Ker}(\text{Hom}_R(S, E) \to \text{Hom}_R(S, M)) \cong \text{Hom}_R(S, \text{Ker}\phi)$,
\[
\text{Ext}_S^1(E', \text{Hom}_R(S, \text{Ker}\phi)) \cong \text{Ext}_R^1(S \otimes_S E', \text{Ker}\phi)
\cong \text{Ext}_R^1(E', \text{Ker}\phi) = 0.
\]

Corollary 2.4. With the above situations, the followings are equivalent;

(1) $\psi : \text{Hom}_R(S, E) \to \text{Hom}_R(S, M)$ is an injective cover

(2) (a) $\phi : E \to M$ is an injective precover

(b) $\text{Hom}_R(S, \text{Ker}\phi)$ has no nonzero injective submodules in $\text{Hom}_R(S, E)$

(3) ψ is an injective precover and $\text{Hom}_R(S, \text{Ker}\phi)$ has no nonzero injective submodules in $\text{Hom}_R(S, E)$.

Example 2.5. Let $S = R[x]$. Given an injective cover $\phi : E \to M$, $\text{Hom}_R(R[x], E) \to \text{Hom}_R(R[x], M)$ is a special injective precover since $R[x]$ is a flat R-module. Note that $\text{Hom}_R(R[x], E) \cong E[[x^{-1}]]$ and $\text{Hom}_R(R[x], M) \cong M[[x^{-1}]]$. Since $\phi : E \to M$ is an injective cover, $K = \text{Ker}\phi$ has no nonzero injective submodules. So $E[[x^{-1}]] \to M[[x^{-1}]]$ is an injective cover if $K[[x^{-1}]]$ has no nonzero injective submodule as $R[x]$-module. But any injective $R[x]$-module is injective as an R-module. So $E[[x^{-1}]] \to M[[x^{-1}]]$ is an injective cover if $K[[x^{-1}]] \cong K \times K \times K \times \cdots$ has no nonzero injective submodule as an R-module.

Proposition 2.6. Let R be a semi-local ring and $\phi : E \to M$ an injective cover. Then

(1) $\text{Ext}_R^n(\bar{E}, \text{Ker}\phi) = 0$ for all $n > 1$ and injective \bar{E}.

(2) $\text{Ext}_R^n(\bar{E}, E) \cong \text{Ext}_R^n(\bar{E}, M)$ for all injective \bar{E} and $n \geq 1$.

Proof. (1) For any injective R-module \bar{E}, let $0 \to K \to F \to \bar{E} \to 0$ be an exact sequence with F free. Since $\text{Ext}_R^n(F, \text{Ker}\phi) = 0$ for all $n \geq 1$, $\text{Ext}_R^n(K, \text{Ker}\phi) \cong \text{Ext}_R^{n+1}(\bar{E}, \text{Ker}\phi)$ for all $n \geq 1$. And since K is injective, $\text{Ext}_R^n(K, \text{Ker}\phi) = 0$. So $\text{Ext}_R^n(\bar{E}, \text{Ker}\phi) = 0$. Proceeding in this manner, $\text{Ext}_R^n(\bar{E}, \text{Ker}\phi) = 0$ for all $n \geq 1$.

(2) It follows from $\text{Hom}_R(\bar{E}, E) \to \text{Hom}_R(\bar{E}, M) \to 0$ is exact for all injective \bar{E} and $\text{Ext}_R^n(\bar{E}, \text{Ker}\phi) = 0$ for all $n \geq 1$. \qed
Remark 2.7. Suppose that for any module M over a ring R, $\text{Ext}^1_R(E, M) = 0$ for all injective R-module E implies that $\text{Ext}^i_R(E, M) = 0$ for all injective R-module E and $i \geq 1$. If $\text{inj.dim}_R M = n < \infty$, then $n = 0$, i.e. M is injective. For if $0 \rightarrow M \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots \rightarrow E^n \rightarrow 0$ is an injective resolution of M with $n \geq 1$, then $\text{Ext}^n_R(E^n, M) = 0$. This means

\[
\begin{array}{ccc}
E^n & \downarrow \text{id} \\
E^{n-1} & \rightarrow & E^n \\
\end{array}
\]

can be completed to a commutative diagram. But then $E^{n-1} \cong E \oplus E^n$ for some injective E and we have an injective resolution $0 \rightarrow M \rightarrow E^0 \rightarrow \cdots \rightarrow E^{n-2} \rightarrow E \rightarrow 0$ of M of length $n - 1$. If $n - 1 \geq 1$, then we can repeat the procedure.

Acknowledgement. The authors would like to express their utmost gratitude to Professor Edgar E. Enochs for his valuable comments and suggestions.

References

Yeong Moo Song
Department of Mathematics Education
Sunchon National University
Sunchon 540-742, Korea
E-mail: ymsong@sunchon.ac.kr

Hae Sik Kim
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail: hkim@dreamwiz.com