ON THE WEAK INVARIANCE PRINCIPLE FOR RANGES OF RECURRENT RANDOM WALKS WITH INFINITE VARIANCE

JU-SUNG KANG* AND IN-SUK WEE†

1. Introduction

Let \(\{ X_k : k = 1, 2, \ldots \} \) be a sequence of independent, identically distributed integer-valued random variables with common distribution function \(F \). Throughout this paper we assume that

(A1) \(F \) belongs to the domain of attraction of a strictly \(\alpha \)-stable distribution with \(1 < \alpha \leq 2 \),

(A2) \(E X_1 = 0 \),

(A3) \(E \exp(iuX_1) = 1 \) if and only if \(u \) is a multiple of \(2\pi \).

We note that \(\{ S_n \} \) is an aperiodic recurrent random walk, where \(S_0 = 0 \) and \(S_n = \sum_{k=1}^n X_k \). Let \(\varphi(u) = E \exp(iuX_1) \). Then it is well-known that

\[
|\varphi(u)| = \exp \{-|u|^{\alpha}l(1/|u|)\} \quad \text{for} \quad |u| \leq \pi,
\]

where \(l(x) \) is a slowly varying function at infinity. Furthermore if we choose \(a_n \) so that

\[
\frac{l(a_n)}{a_n^{\alpha}} = \frac{1}{n}
\]

for each \(n \), then \(Y^{(n)}(t) = S_{\lfloor nt \rfloor}/a_n \) converges weakly to a strictly \(\alpha \)-stable process \(Y(t) \), where \(\lfloor x \rfloor \) denotes the greatest integer not exceeding \(x \) (e.g. see page 345 of [1]).

*Supported by Yonsei University Research Grant and KOSEF, 1996.
†Supported by the Basic Research Institute Program, Ministry of Education, BSRI-95-1407.

Received December 18, 1996.
1991 Mathematics Subject Classification: 60F17, 60J15.
Key words and phrases: weak invariance principle, range, stable process, domain of attraction of a stable distribution.
Ju-Sung Kang and In-Suk Wee

The range \(R_n \) of random walk \(\{ S_k \} \) and the range \(\Lambda(t) \) of stable process \(Y \) are defined as follows;

\[
R_n = \text{the cardinality of } \{S_0, S_1, \cdots, S_n\}
\]

and

\[
\Lambda(t) = m\{Y(s) : 0 \leq s \leq t\},
\]

where “\(m \)” denotes the Lebesgue measure on \(\mathbb{R}^1 \). Set \(\Lambda^{(n)}(t) = R_{[nt]}/a_n \).

The aim of the present work is to prove weak convergence of \(\Lambda^{(n)}(t) \) to \(\Lambda \). In fact, we obtain the existence of \(\tilde{\Lambda}^{(n)} \) and \(\tilde{\Lambda} \), versions of \(\Lambda^{(n)} \) and \(\Lambda \), respectively, such that \(\tilde{\Lambda}^{(n)}(t) \) converges to \(\tilde{\Lambda}(t) \) uniformly on \([0, T]\) in \(L^2 \)-sense for any \(T > 0 \).

Le Gall and Rosen [6] obtained various limit theorems for the range of \(d \)-dimensional random walk in the domain of attraction of a stable distribution of index \(\alpha \). Their results depend on the value of the ratio \(\alpha/d \). That is, for the case \(\alpha/d \leq 1 \), strong law of large numbers and central limit theorems hold and for the case \(\alpha > d = 1 \) which we are concerned with in this work, \(R_n/a_n \) converges in distribution to \(\Lambda(1) \). In this work, we extend their result and prove the weak convergence of \(\Lambda^{(n)} \) to \(\Lambda \).

Le Gal and Rosen [6] obtained various limit theorems for the range of \(d \)-dimensional random walk in the domain of attraction of a stable distribution of index \(\alpha \). Their results depend on the value of the ratio \(\alpha/d \). That is, for the case \(\alpha/d \leq 1 \), strong law of large numbers and central limit theorems hold and for the case \(\alpha > d = 1 \) which we are concerned with in this work, \(R_n/a_n \) converges in distribution to \(\Lambda(1) \). In this work, we extend their result and prove the weak convergence of \(\Lambda^{(n)} \) to \(\Lambda \).

Borodin [3] obtained a weaker result for the similar question for recurrent random walks with finite variance.

Now we state our main result, whose proof is given in Section 2.

Theorem. Under the assumptions (A1), (A2) and (A3), there exist processes \(\tilde{Y}^{(n)} \) and \(\tilde{Y} \) in \(D[0, \infty) \) equipped with Skorokhod metric satisfying the following conditions:

(i) \(\tilde{Y}^{(n)} \equiv D Y^{(n)} \), \(\tilde{Y} \equiv D Y \),

(ii) \(\tilde{Y}^{(n)} \) converges to \(\tilde{Y} \) a.s. in \(D[0, \infty) \), and

(iii) for each \(T > 0 \) and positive integer \(m \),

\[
E \left[\sup_{0 \leq t \leq T} \left| \tilde{\Lambda}^{(n)}(t) - \tilde{\Lambda}(t) \right|^{2m} \right] \longrightarrow 0 \quad \text{as } n \rightarrow \infty,
\]

where \(\tilde{\Lambda}^{(n)} \) and \(\tilde{\Lambda} \) are defined with respect to \(\tilde{Y}^{(n)} \) and \(\tilde{Y} \), respectively, and “\(\equiv D \)” means that two processes have the same finite dimensional distributions.
2. Proof of Main Result

Recall that we assume (A1), (A2) and (A3). Throughout this work, we denote P_0 and E_0 by P and E, respectively.

We present the proof of the Theorem in this section. Since the construction of $\tilde{Y}^{(n)}$ and \tilde{Y} satisfying parts (i) and (ii) of the Theorem are well-known (e.g. see chapter 1 of [7]), it suffices to establish part (iii) of the Theorem. Therefore we may abuse our notation and use $Y^{(n)}, Y, \Lambda^{(n)}$ and Λ for $\tilde{Y}^{(n)}, \tilde{Y}, \tilde{\Lambda}^{(n)}$ and $\tilde{\Lambda}$, respectively throughout the remainder of the work. Essentially, the proof of our assertion amounts to estimating

\begin{equation}
E \left[(\Lambda^{(n)}(t) - \Lambda(t))^{2m} \right],
\end{equation}

since a simple monotonicity argument using also continuity of $\Lambda(t)$ implies our assertion if (2.1) converges to zero. Le Gall and Rosen [6] showed that $\tilde{\Lambda}^{(n)}(t)$ converges to $\tilde{\Lambda}(t)$ in L^1-sense, but their technique doesn’t work in general. To deal with (2.1), we express the ranges of random walks and stable processes using their local times, respectively. The local time $N(n, x)$ of random walk $\{S_k\}$ is defined by

\[N(n, x) = \text{the number of } \{ 0 \leq k \leq n : S_k = x \}. \]

Let

\[L^{(n)}(t, x) = \frac{a_n}{n} N([nt], [xa_n]) \]

and

\[W_n(t) = \{ x \in \mathbb{R} : L^{(n)}(t, x) > 0 \}. \]

Then we note that

\begin{align*}
\Lambda^{(n)}(t) &= \frac{1}{a_n} \sum_{k \in \mathbb{Z}} \chi_{[N([nt], k) > 0]} \\
&= \int_{\mathbb{R}} \chi_{W_n(t)}(x) \, dx.
\end{align*}

For a stable process $Y(t)$ of index $1 < \alpha < 2$, it is well-known that there exists a version of local time $\{L(t, x)\}$ which is jointly continuous in (t, x)
and satisfies the so-called occupation time density formula, that is, for any Borel set B,
$$
\int_B L(t, x) \, dx = \int_0^t \chi_B(Y(s)) \, ds \quad \text{a.s.}
$$
The existence and joint continuity of $L(t, x)$ were proved by Trotter [8] for Brownian motion and by Boylan [4] for stable processes of index $\alpha > 1$. Moreover, Kang and Wee [5] proved that as $n \to \infty$,
\begin{equation}
(2.2) \quad \sup_{(t, x) \in [0, T] \times \mathbb{R}^1} \left| L^{(n)}(t, x) - L(t, x) \right| \to 0 \quad \text{in } L^2.
\end{equation}
We provide an useful expression of $\Lambda(t)$ in terms of local time $L(t, x)$ in Lemma 2.1, and then apply the result of [5] to estimate (2.1).

Lemma 2.1. For each $t \geq 0$,
$$
\Lambda(t) = \int_{\mathbb{R}^1} \chi_{W(t)}(x) \, dx \quad \text{a.s.}
$$
where $W(t) = \{ x \in \mathbb{R}^1 : L(t, x) > 0 \}$.

Proof. We write
$$
\Lambda(t) = m(G(t)) + m(W(t)),
$$
where
$$
G(t) = \{ x \in \mathbb{R}^1 : Y(s) = x \text{ for some } s \in [0, t], \ L(t, x) = 0 \}.
$$
Let
$$
\tau_x = \inf\{ s \geq 0 : Y(s) = x \},
$$
\$$
\hat{Y}(s) = Y(s + \tau_x) - x,
$$
and $\hat{L}(s, y)$ be the local time of \hat{Y}. The strong Markov property implies that
\begin{align}
E[m(G(t))] &= \int_{\mathbb{R}^1} P\left(\tau_x \leq t, \ \hat{L}(t - \tau_x, 0) = 0 \right) \, dx \\
&= \int_{\mathbb{R}^1} \int_0^t P\left(\hat{L}(t - s, 0) = 0 \right) P(\tau_x \in ds) \, dx \\
&= 0,
\end{align}
where the last equality follows from the definition of $\hat{L}(t, 0)$ as a continuous additive functional with support $\{0\}$ (see page 216 of [2]).
LEMMA 2.2. For each $t \geq 0$ and positive integer m,

$$E \left[\left(\Lambda^{(n)}(t) - \Lambda(t) \right)^{2m} \right] \longrightarrow 0 \quad \text{as} \quad n \to \infty.$$

Proof. Recall that

$$W_n(t) = \{ x \in \mathbb{R}^1 : L^{(n)}(t,x) > 0 \}$$

and

$$W(t) = \{ x \in \mathbb{R}^1 : L(t,x) > 0 \}.$$

For each $K > 0$, let

$$\Lambda^{(n)}_K(t) = \int_{-K}^{K} \chi_{W_n(t)}(x) \, dx$$

and

$$\Lambda_K(t) = \int_{-K}^{K} \chi_{W(t)}(x) \, dx.$$

Then

$$E \left[\left(\Lambda^{(n)}(t) - \Lambda^{(n)}_K(t) \right)^{2m} \right] \leq E \left[\Lambda^{(n)}(t)^{2m} \cdot \chi_{\{ \sup_{0 \leq l \leq [nt]} |S_l| > Ka_n \}} \right]$$

$$\leq \left\{ E \left[(\Lambda^{(n)}(t))^{4m} \right] \right\}^{1/2} \cdot \left\{ P \left(\sup_{0 \leq l \leq [nt]} |S_l| > Ka_n \right) \right\}^{1/2}.$$

Weak convergence of $Y^{(n)}$ to Y implies that for any $\varepsilon > 0$, there exists $K = K(\varepsilon)$ such that

$$\sup_n P \left(\sup_{0 \leq l \leq [nt]} |S_l| > Ka_n \right) < \varepsilon.$$

It follows from [6] that any finite moment of $\Lambda^{(n)}(t)$ is bounded uniformly in n. Thus by (2.5), we may choose K large so that (2.4) is sufficiently small for all n large. For $1 < \alpha < 2$, it is easy to see that for any $u > 0$,

$$E \left[\exp(u \Lambda(t)) \right] < \infty$$

299
without assuming the symmetry of \(Y(t)\), by modifying the argument in Lemma 4.1 of [9]. Thus
\[
E \left[\Lambda(t)^{2m} \right] < \infty,
\]
which is obvious for \(\alpha = 2\). This enables us to have that for any \(\varepsilon > 0\), there exists \(K = K(\varepsilon)\) such that
\[
E \left[(\Lambda(t) - \Lambda_K(t))^{2m} \right] < \varepsilon.
\]

Now we fix \(K\) large enough, and observe that

\[
E \left[\left(\int_{-K}^{K} \chi_{W_{\alpha}(t) \cap W(t)}(x) \, dx - \int_{-K}^{K} \chi_{W_{\alpha}(t) \cap W(t)}(x) \, dx \right)^{2m} \right]
\]

(2.6)

\[
\leq 2^{4m-2} K^{2m-1} E \left[\int_{-K}^{K} \chi_{W_{\alpha}(t) \cap W(t)'}(x) \, dx \right]
+ 2^{4m-2} K^{2m-1} E \left[\int_{-K}^{K} \chi_{W_{\alpha}(t) \cap W(t)}(x) \, dx \right].
\]

Let \(Y[0; t] = \{Y(s) : 0 \leq s \leq t\}\), \(cl(Y[0; t])\) be its closure, and \(U_{\delta}(t)\) be the \(\delta\)-neighborhood of \(cl(Y[0; t])\). Then as \(\delta \to 0\),
\[
m(U_{\delta}(t)) \to m(cl(Y[0; t])) = m(Y[0; t]) \quad \text{a.s.}
\]

and part (ii) of the Theorem implies that for fixed \(\delta > 0\),

\[
W_n(t) \subset U_{\delta}(t) \quad \text{a.s.}
\]

(2.7)

for all sufficiently large \(n\). Now fix \(\delta > 0\) so that \(E \left[m \left(U_{\delta}(t) \cap Y[0; t]^c \right) \right]\) is sufficiently small. Then by (2.7) and (2.3), for \(n\) large,
\[
E \left[\int_{-K}^{K} \chi_{W_{\alpha}(t) \cap W(t)'}(x) \, dx \right]
\]

\[
\leq E \left[\int_{-K}^{K} \chi_{U_{\delta}(t) \cap W(t)'}(x) \, dx \right]
\]

\[
\leq E \left[\int_{-K}^{K} \chi_{Y[0; t] \cap W(t)'}(x) \, dx \right] + E \left[m \left(U_{\delta}(t) \cap Y[0; t]^c \right) \right]
\]

\[
\leq E \left[m \left(G(t) \right) \right] + E \left[m \left(U_{\delta}(t) \cap Y[0; t]^c \right) \right]
\]

\[= E \left[m \left(U_{\delta}(t) \cap Y[0; t]^c \right) \right].
\]
Hence the first summand of (2.6) can be made arbitrarily small for \(n \) sufficiently large. To estimate the second summand of (2.6), observe that for any \(\eta > 0 \),

\[
P \left(L(t, x) > 0, \ L^{(n)}(t, x) = 0 \right) \leq P \left(0 < L(t, x) < \eta \right) + P \left(\left| L^{(n)}(t, x) - L(t, x) \right| \geq \eta \right).
\]

Use (2.2) and bounded convergence theorem to show that

\[
E \left[\int_{-K}^{K} \chi_{W(t) \cap W_{n}(x)}(x) \, dx \right] = \int_{-K}^{K} P \left(L(t, x) > 0, \ L^{(n)}(t, x) = 0 \right) \, dx \to 0
\]
as \(n \) goes to infinity.

Proof of the Theorem. Fix \(h > 0 \), which will be chosen later. Let \(0 = t_0 < t_1 < \cdots < t_k \leq t_{k+1} = T \) be a partition of \([0, T]\) such that \(t_j - t_{j-1} = h \) for all \(1 \leq j \leq k \) and \(k = \lfloor T/h \rfloor \). Observe that by simple monotonicity of \(\Lambda^{(n)} \) and \(\Lambda \),

\[
E \left[\sup_{0 \leq t \leq T} \left| \Lambda^{(n)}(t) - \Lambda(t) \right|^{2m} \right]
\]

\[
\leq 3^{2^{m-1}} 2^{2m} E \left[\max_{0 \leq j \leq k} \left| \Lambda(t_{j+1}) - \Lambda(t_j) \right|^{2} \right]
\]

\[
+ 3^{2^{m-1}} (2^{2m} + 1) \sum_{j=0}^{k+1} E \left[\left| \Lambda^{(n)}(t_j) - \Lambda(t_j) \right|^{2} \right].
\]

By the almost sure continuity of the mapping \(t \mapsto \Lambda(t) \) and dominate convergence theorem, for given \(\varepsilon > 0 \), we can choose \(h \) so that the first term of (2.8) is less than \(\varepsilon/2 \). Then Lemma 2.2 implies that the second term of (2.8) can be made arbitrarily small if \(n \) is large enough, which completes the proof.
References

On the weak invariance principle

Ju-Sung Kang
Department of Mathematics, Yonsei University, Seoul 120-749, Korea

In-Suk Wee
Department of Mathematics, Korea University, Seoul 136-701, Korea