MULTIPLIER TRANSFORMATIONS AND STRONGLY CLOSE-TO-CONVEX FUNCTIONS

Nak Eun Cho and Tae Hwa Kim

Abstract. The purpose of the present paper is to introduce some new subclasses of strongly close-to-convex functions in the open unit disk defined by multiplier transformations and study their properties. Our results include several previous known results as special cases.

1. Introduction

Let A denote the class of analytic functions defined in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$ with the normalization $f(0) = f'(z) - 1 = 0$. If f and g are analytic in U, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function w in U such that $f(z) = g(w(z))$. We denote by $\mathcal{S}^*(\eta)$ and $\mathcal{C}(\eta)$ the subclasses of A consisting of all analytic functions which are, respectively, starlike and convex of order $\eta (0 \leq \eta < 1)$ in U. (see, e.g., Srivastava and Owa [16]).

If $f \in A$ satisfies

$$\left| \arg \left(\frac{zf'(z)}{f(z)} - \eta \right) \right| < \frac{\pi}{2} \beta \quad (z \in U)$$

for some $\eta (0 \leq \eta < 1)$ and $\beta (0 < \beta \leq 1)$, then f is said to be strongly starlike of order β and type η in U. If $f \in A$ satisfies

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - \eta \right) \right| < \frac{\pi}{2} \beta \quad (z \in U)$$

Received January 20, 2002.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: subordinate, multiplier transformation, strongly close-to-convex, integral operator.

This work was supported by Korea Research Foundation Grant (KRF-2001-015-DP0013).
for some $\eta (0 \leq \eta < 1)$ and $\beta (0 < \beta \leq 1)$, then f is said to be strongly convex of order β and type η in \mathcal{U}. We denote by $\mathcal{S}^\ast (\beta, \eta)$ and $\mathcal{C}(\beta, \eta)$ [6], respectively, the subclasses of \mathcal{A} consisting of all strongly starlike and strongly convex of order β and type η in \mathcal{U}. It is obvious that $f \in \mathcal{A}$ belongs to $\mathcal{S}^\ast (\beta, \eta)$ if and only if $zf' \in \mathcal{S}^\ast (\beta, \eta)$. We also note that $\mathcal{S}^\ast (1, \eta) = \mathcal{S}^\ast (\eta)$ and $\mathcal{C}(1, \eta) = \mathcal{C}(\eta)$. In particular, the classes $\mathcal{S}^\ast (\beta, 0)$ and $\mathcal{C}(\beta, 0)$ have been extensively studied by Mocanu [8] and Nunokawa [11].

For any integer n, we define the multiplier transformations I_n^λ of functions $f \in \mathcal{A}$ by

\[
I_n^\lambda f(z) = z + \sum_{k=2}^{\infty} k \left(\frac{1 + \lambda}{k + \lambda} \right)^n a_k z^k \quad (\lambda \geq 0).
\]

Obviously, we have

\[
I_n^\lambda (I_m^\lambda f(z)) = I_{n+m}^\lambda f(z)
\]

for all integers m and n. The operators I_n^λ are closely related to the Komatu integral operators [5] and the differential and integral operators defined by Salagean [13]. We also note that $I_0^\lambda f(z) = zf'(z)$ and $I_1^\lambda f(z) = f(z)$. Now we define new classes of analytic functions by using the multiplier transformations I_n^λ defined by (1.1) as follows:

For any integer n, let $\mathcal{K}_n^\lambda (\gamma, \delta, \eta, A, B)$ be the class of functions $f \in \mathcal{A}$ satisfying the condition

\[
\left| \arg \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda g(z)} - \gamma \right) \right| < \frac{\pi}{2} \quad (0 \leq \gamma < 1; 0 < \delta \leq 1; z \in \mathcal{U})
\]

for some $g \in \mathcal{S}_n^\lambda (\eta, A, B)$, where

\[
\mathcal{S}_n^\lambda (\eta, A, B) = \left\{ g \in \mathcal{A} : \frac{1}{1 - \eta} \left(\frac{zI_n^\lambda g(z)'}{I_n^\lambda g(z)} - \eta \right) < \frac{1 + Az}{1 + Bz} \right\}
\]

\[
(0 \leq \eta < 1; -1 \leq B < A \leq 1; z \in \mathcal{U})
\]

We note that $\mathcal{K}_0^\lambda (\gamma, 1, \eta, 1, -1)$ and $\mathcal{K}_1^\lambda (\gamma, 1, \eta, 1, -1)$ are the classes of quasi-convex and close-to-convex functions of order γ and type η, respectively, introduced and studied by Noor and Alkhorasani [10] and Silverman [14]. Further, $\mathcal{K}_0^\lambda (0, \delta, 0, 1, -1)$ is the class of strongly close-to-convex functions of order δ in the sense of Pommerenke [12].
In the present paper, we give some argument properties of analytic functions belonging to A which contain the basic inclusion relationships among the classes $K_n^\lambda(\gamma, \delta, \eta, A, B)$. The integral preserving properties in connection with the operator I_n^λ defined by (1.1) are also considered. Furthermore, we obtain the previous results by Bernardi [1], Libera [4], Noor [9] and Noor and Alkhorasani [10] as special cases.

2. Main results

In proving our main results, we need the following lemmas.

Lemma 2.1 [2]. Let h be convex univalent in U with $h(0) = 1$ and $\text{Re} (\beta h(z) + \gamma) > 0(\beta, \gamma \in \mathbb{C})$. If p is analytic in U with $p(0) = 1$, then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z) \quad (z \in U)$$

implies

$$p(z) \prec h(z) \quad (z \in U).$$

Lemma 2.2 [7]. Let h be convex univalent in U and ω be analytic in U with $\text{Re} \omega(z) \geq 0$. If p is analytic in U and $p(0) = h(0)$, then

$$p(z) + \omega(z)zp'(z) \prec h(z) \quad (z \in U)$$

implies

$$p(z) \prec h(z) \quad (z \in U).$$

Lemma 2.3 [11]. Let p be analytic in U with $p(0) = 1$ and $p(z) \neq 0$ in U. Suppose that there exists a point $z_0 \in U$ such that

\begin{align}
(2.1) & \quad \left| \arg p(z) \right| < \frac{\pi}{2} \alpha \text{ for } |z| < |z_0| \\
\text{and} \quad (2.2) & \quad \left| \arg p(z_0) \right| = \frac{\pi}{2} \alpha \quad (0 < \alpha \leq 1).
\end{align}

Then we have

\begin{align}
(2.3) & \quad \frac{z_0p'(z_0)}{p(z_0)} = ik\alpha,
\end{align}
where

\[(2.4)\quad k \geq \frac{1}{2} \left(a + \frac{1}{a} \right) \text{ when } \arg p(z_0) = \frac{\pi}{2} \alpha \]

\[(2.5)\quad k \leq -\frac{1}{2} \left(a + \frac{1}{a} \right) \text{ when } \arg p(z_0) = -\frac{\pi}{2} \alpha \]

and

\[(2.6)\quad p(z_0)^{\frac{1}{a}} = \pm ia \ (a > 0). \]

At first, with the help of Lemma 2.1, we obtain the following

Proposition 2.1. Let \(h \) be convex univalent in \(U \) with \(h(0) = 1 \) and \(\Re h(z) > 0 \). If a function \(f \in A \) satisfies the condition

\[
\frac{1}{1 - \eta} \left(\frac{z(I^\lambda_n f(z))'}{I^\lambda_n f(z)} - \eta \right) \prec h(z) \quad (0 \leq \eta < 1; \ z \in U),
\]

then

\[
\frac{1}{1 - \eta} \left(\frac{z(I^\lambda_{n+1} f(z))'}{I^\lambda_{n+1} f(z)} - \eta \right) \prec h(z) \quad (0 \leq \eta < 1; \ z \in U).
\]

Proof. Let

\[
p(z) = \frac{1}{1 - \eta} \left(\frac{z(I^\lambda_{n+1} f(z))'}{I^\lambda_{n+1} f(z)} - \eta \right),
\]

where \(p \) is analytic function with \(p(0) = 1 \). By using the equation

\[(2.7)\quad z(I^\lambda_{n+1} f(z))' = (\lambda + 1)I^\lambda_n f(z) - \lambda I^\lambda_{n+1} f(z), \]

we get

\[(2.8)\quad \lambda + \eta + (1 - \eta)p(z) = (\lambda + 1) \frac{I^\lambda_n f(z)}{I^\lambda_{n+1} f(z)}. \]
Taking logarithmic derivatives in both sides of (2.8) and multiplying by \(z \), we have

\[
p(z) + \frac{zp'(z)}{\lambda + \eta + (1 - \eta)p(z)} = \frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda f(z)} - \eta \right) \quad (z \in \mathcal{U}).
\]

Applying Lemma 2.1, it follows that \(p \prec h \), that is,

\[
\frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda f(z)} - \eta \right) \prec h(z) \quad (z \in \mathcal{U}).
\]

□

Taking \(h(z) = (1 + Az)/(1 + Bz)(-1 \leq B < A \leq 1) \) in Proposition 2.1, we have

Corollary 2.1. The inclusion relation, \(S_\lambda^n(\eta, A, B) \subset S_\lambda^{n+1}(\eta, A, B) \), holds for any integer \(n \).

Letting \(n = \lambda = 0 \) and \(h(z) = ((1 + z)/(1 - z))^\beta \) \((0 < \beta \leq 1)\) in Proposition 2.1, we have the following inclusion relation.

Corollary 2.2. \(C(\beta, \eta) \subset S^*(\beta, \eta) \).

Proposition 2.2. Let \(h \) be convex univalent in \(\mathcal{U} \) with \(h(0) = 1 \) and \(\text{Re} \ h(z) > 0 \). If a function \(f \in \mathcal{A} \) satisfies the condition

\[
\frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda f(z)} - \eta \right) \prec h(z) \quad (0 \leq \eta < 1; \ z \in \mathcal{U}),
\]

then

\[
\frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda F_c(f)(z))'}{I_n^\lambda F_c(f)(z)} - \eta \right) \prec h(z) \quad (0 \leq \eta < 1; \ z \in \mathcal{U}),
\]

where \(F \) be the integral operator defined by

\[
F_c(f) := F_c(f)(z) = \frac{c + 1}{z^c} \int_0^z t^{c-1} f(t)\,dt \quad (c \geq 0).
\]

Proof. From (2.9), we have

\[
z(I_n^\lambda F_c(f)(z))' = (c + 1)I_n^\lambda f(z) - cI_n^\lambda F_c(f)(z).
\]
Let
\[p(z) = \frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda F_c(f)(z))'}{I_n^\lambda F_c(f)(z)} - \eta \right), \]
where \(p \) is analytic function with \(p(0) = 1 \). Then, by using (2.10), we get
\[(2.11) \quad c + \eta + (1 - \eta)p(z) = (c + 1) \frac{I_n^\lambda f(z)}{I_n^\lambda F_c(f)(z)}. \]

Taking logarithmic derivatives in both sides of (2.11) and multiplying by \(z \), we have
\[p(z) + \frac{zp'(z)}{c + \eta + (1 - \eta)p(z)} = \frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda F_c(f)(z)} - \eta \right) \quad (z \in \mathcal{U}). \]

Therefore, by Lemma 2.1, we have
\[\frac{1}{1 - \eta} \left(\frac{z(I_n^\lambda f_c(f)(z))'}{I_n^\lambda F_c(f)(z)} - \eta \right) \prec h(z) \quad (z \in \mathcal{U}). \]

Letting \(h(z) = (1 + Az)/(1 + Bz)(-1 \leq B < A \leq 1) \) in Proposition 2.2, we have immediately

COROLLARY 2.3. If \(f \in S_n^\lambda(\eta, A, B) \), then \(F_c(f) \in S_n^\lambda(\eta, A, B) \), where \(F_c \) is the integral operator defined by (2.6).

REMARK 2.1. If we take \(h(z) = ((1 + z)/(1 - z))^\beta \) \((0 < \beta \leq 1) \) in Proposition 2.2, we see immediately that all functions belonging to the classes \(S^\star(\beta, \eta) \) and \(C^\star(\beta, \eta) \), respectively, preserve the angles under the integral operator defined by (2.9).

Now, we derive

THEOREM 2.1. Let \(f \in \mathcal{A} \) and \(0 < \delta \leq 1, 0 \leq \gamma < 1 \). If
\[\left| \arg \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda g(z)} - \gamma \right) \right| < \frac{\pi}{2} \delta \]
for some \(g \in S_n^\lambda(\eta, A, B) \), then
\[\left| \arg \left(\frac{z(I_{n+1}^\lambda f(z))'}{I_{n+1}^\lambda g(z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha, \]
where \(\alpha (0 < \alpha \leq 1) \) is the solution of the equation:

\[
\delta = \begin{cases}
\alpha + \frac{2}{\pi} \tan^{-1} \left(\frac{\alpha \cos \frac{\pi}{2} t_1}{(1-\eta)(1+A) + \eta + \lambda + \alpha \sin \frac{\pi}{2} t_1} \right) & \text{for } B \neq -1, \\
\alpha & \text{for } B = -1,
\end{cases}
\]

and

\[
t_1 = \frac{2}{\pi} \sin^{-1} \left(\frac{(1-\eta)(A-B)}{(1-\eta)(1-AB) + (\eta + \lambda)(1-B^2)} \right).
\]

Proof. Let

\[
p(z) = \frac{1}{1-\gamma} \left(\frac{z(I_{n+1}^\lambda f(z))'}{I_{n+1}^\lambda g(z)} - \gamma \right).
\]

Using (2.7) and simplifying, we have

\[
((1-\gamma)p(z) + \gamma)I_{n+1}^\lambda g(z) = (\lambda + 1)I_n^\lambda f(z) - \lambda I_{n+1}^\lambda f(z).
\]

Differentiating (2.14) and multiplying by \(z \), we obtain

\[
(1-\gamma)zp'(z)I_{n+1}^\lambda g(z) + ((1-\gamma)p(z) + \gamma)z(I_{n+1}^\lambda g(z))' \\
= (\lambda + 1)z(I_n^\lambda f(z))' - \lambda z(I_{n+1}^\lambda f(z))'.
\]

Since \(g \in S_\lambda^\lambda(\eta, A, B) \), by Corollary 2.1, we know that \(g \in S_{n+1}^\lambda(\eta, A, B) \). Let

\[
q(z) = \frac{1}{1-\eta} \left(\frac{z(I_{n+1}^\lambda g(z))'}{I_{n+1}^\lambda g(z)} - \eta \right).
\]

Then, using (2.7) once again, we have

\[
(1-\eta)q(z) + \eta + \lambda = (\lambda + 1)I_n^\lambda g(z) I_{n+1}^\lambda g(z).
\]

From (2.15) and (2.16), we obtain

\[
\frac{1}{1-\gamma} \left(z \frac{I_n^\lambda f(z)}{I_n^\lambda g(z)} - \gamma \right) = p(z) + \frac{zp'(z)}{(1-\eta)q(z) + \eta + \lambda}.
\]
While, by using the result of Silverman and Silvia [15], we have

\[(2.17) \quad \left| \frac{q(z) - 1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2} \quad (z \in \mathcal{U}; \ B \neq -1)\]

and

\[(2.18) \quad \text{Re} \{q(z)\} > \frac{1 - A}{2} \quad (z \in \mathcal{U}; \ B = -1).\]

Then, from (2.17) and (2.18), we obtain

\[(1 - \eta)q(z) + \eta + \lambda = \rho e^{i\frac{\pi \phi}{2}},\]

where

\[
\left\{ \begin{array}{l}
\frac{(1 - \eta)(1 - A)}{1 - B} + \eta + \lambda < \rho < \frac{(1 - \eta)(1 + A)}{1 + B} + \eta + \lambda \\
-t_1 < \phi < t_1 \text{ for } B \neq -1,
\end{array} \right.
\]

when \(t_1\) is given by (2.11), and

\[
\left\{ \begin{array}{l}
\frac{(1 - \eta)(1 - A)}{2} + \eta + \lambda < \rho < \infty \\
-1 < \phi < 1 \text{ for } B = -1.
\end{array} \right.
\]

We note that \(p\) is analytic in \(\mathcal{U}\) with \(p(0) = 1\) and \(\text{Re} \ p(z) > 0\) in \(\mathcal{U}\) by applying the assumption and Lemma 2.2 with \(\omega(z) = 1/((1 - \eta)q(z) + \eta + \lambda)\). Hence \(p(z) \neq 0\) in \(\mathcal{U}\).

If there exists a point \(z_0 \in \mathcal{U}\) such that the conditions (2.1) and (2.2) are satisfied, then (by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5) and (2.6).

At first, suppose that \(p(z_0)^{\frac{1}{\alpha}} = ia \ (a > 0)\). Then we obtain

\[
\arg \left(p(z_0) + \frac{z_1 p'(z_0)}{(1 - \eta)q(z_0) + \eta + \lambda} \right) = \frac{\pi}{2} \alpha + \arg \left(1 + ia k(p e^{i\frac{\pi \phi}{2}})^{-1} \right) \\
\geq \frac{\pi}{2} \alpha + \tan^{-1} \left(\frac{\alpha k \sin \frac{\pi}{2}(1 - \phi)}{\rho + \alpha k \cos \frac{\pi}{2}(1 - \phi)} \right) \\
\geq \frac{\pi}{2} \alpha + \tan^{-1} \left(\frac{\alpha \cos \frac{\pi}{2} t_1}{(1 - \eta)(1 + A) + \eta + \lambda + \alpha \sin \frac{\pi}{2} t_1} \right) \\
= \frac{\pi}{2} \delta,
\]
where δ and t_1 are given by (2.12) and (2.13), respectively. Similarly, for the case $B = -1$, we have

$$\arg \left(p(z_0) + \frac{z_0 p'(z_0)}{(1 - \eta)q(z_0) + \eta + \lambda} \right) \geq \frac{\pi}{2} \alpha.$$

These evidently contradict the assumption of Theorem 2.1.

Next, suppose that $p(z_0) \frac{\pi}{2} = -ia \ (a > 0)$. Applying the same method as the above, we have

$$\arg \left(p(z_0) + \frac{z_0 p'(z_0)}{(1 - \eta)q(z_0) + \eta + \lambda} \right) \leq -\frac{\pi}{2} \delta,$$

where δ and t_1 are given by (2.12) and (2.13), respectively. Similarly, for the case $B = -1$, we have

$$\arg \left(p(z_0) + \frac{z_1 p'(z_0)}{(1 - \eta)q(z_0) + \eta + \lambda} \right) \leq -\frac{\pi}{2} \alpha.$$

These also are contradiction to the assumption of Theorem 2.1. Therefore we complete the proof of Theorem 2.1.

From Theorem 2.1, we see easily the following

Corollary 2.4. The inclusion relation, $K^{\lambda}_{n}(\gamma, \delta, \eta, A, B) \subset K^{\lambda}_{n+1}(\gamma, \delta, \eta, A, B)$, holds for any integer n.

Taking $n = \lambda = 0$ in Theorem 2.1, we have

Corollary 2.5. Let $f \in A$. If

$$\left| \arg \left(\frac{(zf'(z))'}{g'(z)} - \gamma \right) \right| < \frac{\pi}{2} \delta \ (0 \leq \gamma < 1; \ 0 < \delta \leq 1)$$

for some $g \in S^{\lambda}_{0}(\eta, A, B)$, then

$$\left| \arg \left(\frac{zf'(z)}{g(z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha,$$
where $\alpha(0 < \alpha \leq 1)$ is the solution of the equation given by (2.12).

Remark 2.2. If we put $A = 1$, $B = -1$ and $\delta = 1$ in Corollary 2.5, then we see that every quasi-convex function of order γ and type η is close-to-convex function of order γ and type η, which reduces the result obtained by Noor [9].

Letting $n = \lambda = \gamma = 0$, $B \to A(A < 1)$ and $g(z) = z$ in Theorem 2.1, we obtain

Corollary 2.6. Let $f \in A$ and $0 < \delta \leq 1$. If

$$| \arg (f'(z) + zf''(z)) | < \frac{\pi}{2}\delta,$$

then

$$| \arg f'(z) | < \frac{\pi}{2}\alpha,$$

where $\alpha (0 < \alpha \leq 1)$ is the solution of the equation:

$$\delta = \alpha + \frac{2}{\pi} \tan^{-1} \alpha.$$

Next, we prove

Theorem 2.2. Let $f \in A$ and $0 < \delta \leq 1$, $0 \leq \gamma < 1$. If

$$| \arg \left(\frac{z(I_n^\lambda f(z))'}{I_n^\lambda g(z)} - \gamma \right) | < \frac{\pi}{2}\delta$$

for some $g \in S_n^{\lambda}(\eta, A, B)$, then

$$| \arg \left(\frac{z(I_n^\lambda F_c(f))(z)'}{I_n^\lambda F_c(g)(z)} - \gamma \right) | < \frac{\pi}{2}\alpha,$$

where F_c is defined by (2.9), and $\alpha (0 < \alpha \leq 1)$ is the solution of the equation given by (2.12).

Proof. Let

$$p(z) = \frac{1}{1 - \gamma} \left(\frac{z(I_n^\lambda F_c(f)(z))'}{I_n^\lambda F_c(g)(z)} - \gamma \right).$$
Since \(g \in S^{\lambda}_{n}(\eta, A, B) \), we have from Proposition 2.2 that \(F_{c}(g) \in S^{\lambda}_{n}(\eta, A, B) \). Using (2.7) we have

\[
(1 - \gamma)p(z) + \gamma I^{\lambda}_{n}F_{c}(g)(z) = (c + 1)I^{\lambda}_{n}f(z) - cI^{\lambda}_{n}F_{c}(f)(z).
\]

Then, by a simple calculation, we get

\[
(1 - \gamma)zp'(z) + ((1 - \gamma)p(z) + \gamma)((1 - \eta)q(z) + c + \eta) = (c + 1)\frac{z(I^{\lambda}_{n}F_{c}(g)(z))'}{I^{\lambda}_{n}F_{c}(g)(z)},
\]

where

\[
q(z) = \frac{1}{1 - \eta} \left(\frac{z(I^{\lambda}_{n}F_{c}(g)(z))'}{I^{\lambda}_{n}F_{c}(g)(z)} - \gamma \right).
\]

Hence we have

\[
\frac{1}{1 - \gamma} \left(\frac{z(I^{\lambda}_{n}f(z))'}{I^{\lambda}_{n}f(z)} - \gamma \right) = p(z) + \frac{zp'(z)}{(1 - \eta)q(z) + \eta + c}.
\]

The remaining part of the proof in Theorem 2.2 is similar to that of Theorem 2.1 and so we omit it. \(\square\)

From Theorem 2.2, we see easily the following

Corollary 2.7. If \(f \in K^{\lambda}_{n}(\gamma, \delta, \eta, A, B) \), then \(F_{c}(f) \in K^{\lambda}_{n}(\gamma, \delta, \eta, A, B) \), where \(F_{c} \) is the integral operator defined by (2.9).

Remark 2.3. If we take \(n = \lambda = 0 \) and \(n = 1, \lambda = 0 \) with \(\delta = 1, A = 1 \) and \(B = -1 \) in Corollary 2.7, respectively, then we have the corresponding results obtained by Noor and Alkhorasani [10]. Furthermore, taking \(n = 1, \gamma = \lambda = 0, A = 1, B = -1 \) and \(\delta = 1 \) in Corollary 2.7, we obtain the classical result by Bernardi [1], which implies the result studied by Libera [4].

Acknowledgements. The author would like to express many thanks to the referee for his valuable suggestions.

References

410 Nak Eun Cho and Tae Hwa Kim

DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, BUSAN 608-737, KOREA
E-mail: necho@pknu.ac.kr
taehwa@pknu.ac.kr