THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESSES GENERATED BY NEGATIVELY ASSOCIATED RANDOM VECTORS

TAE-SUNG KIM, MI HWA KO, AND MYEONG-HEE RO

Abstract. Let \(\{X_t\} \) be an \(m \)-dimensional linear process of the form

\[
X_t = \sum_{j=0}^{\infty} A_j Z_{t-j},
\]

where \(\{Z_t\} \) is a sequence of stationary \(m \)-dimensional negatively associated random vectors with \(E(Z_t) = 0 \) and \(E|Z_t|^2 < \infty \). In this paper we prove the central limit theorems for multivariate linear processes generated by negatively associated random vectors.

1. INTRODUCTION

Notions of negative dependence for collections of random variables have been much studied in recent years. The most prevalent negatively dependent notion is that of negative association. A finite collection \(\{Y_i, 1 \leq i \leq m\} \) of random variables is said to be negatively associated (NA) if for any disjoint subsets \(A, B \) of \(\{1, 2, \ldots, m\} \) and for all coordinatewise nondecreasing functions

\[
f : \mathbb{R}^A \to \mathbb{R}, \ g : \mathbb{R}^B \to \mathbb{R} \quad \text{Cov}(f(Y_i : i \in A), g(Y_j : j \in B)) \leq 0,
\]

where the covariance is defined. An infinite collection of random variables is negatively associated if every finite subcollection is negatively associated. This negatively dependent notion was first defined by Joag-Dev & Proschan [6]. Negatively associated sequences are widely encountered in multivariate statistical analysis and reliability theory, and the notions of negative association have more attention recently.

\[\text{Received by the editors August 27, 2003 and, in revised form, April 20, 2004.}
\text{2000 Mathematics Subject Classification. 60F05, 60G10.}
\text{Key words and phrases. negatively associated random vector, multivariate linear process, central limit theorem.}
\text{© 2004 Korea Soc. Math. Educ.} \]

Let $X_t, t = 0, \pm 1, \ldots$, be an m-dimensional linear process of the form

$$X_t = \sum_{j=0}^{\infty} A_j Z_{t-j}$$

(1)

defined on a probability space (Ω, A, P), where $Z_t, t = 0, \pm 1, \ldots$, is a sequence of strictly stationary m-dimensional random vectors with mean $0 : m \times 1$ and positive definite covariance matrix $\Gamma : m \times m$. The class of linear processes defined in (1) contains stationary multivariate autoregressive moving average processes (MARMA) that satisfy certain condition (See Brockwell & Davis [3]). Fakhre-Zakeri & Farshidi [4] established a central limit theorem for linear process generated by iid random variables, and Fakhre-Zakeri & Lee [5] derived a central limit theorem for multivariate linear process generated by martingale difference random vectors.

In this paper we introduce the notion of negatively associated random vectors and prove the central limit theorems for stationary multivariate linear processes generated by negatively associated random vectors.

2. Results

Definition 2.1. A finite sequence $\{Z_t, 1 \leq t \leq n\}$ of m-dimensional random vectors is said to be negatively associated if for any disjoint subsets A, B of $\{1, \ldots, n\}$ and for all coordinatewise nondecreasing functions f and g we have

$$\text{Cov}(f(Z_i : i \in A), g(Z_j : j \in B)) \leq 0,$$

(2)

whenever this covariance is defined. Infinite collection of m-dimensional random vectors is negatively associated if every finite subcollection is negatively associated.

Lemma 2.2. Let $\{Y_1, \ldots, Y_n\}$ be a strictly stationary sequence of negatively associated random variables with $EY_1 = 0, EY_1^2 < \infty$. Then

$$E(\max_{1 \leq k \leq n} |Y_1 + \cdots + Y_k|^2) \leq AnEY_1^2$$

where A is a positive constant.

Proof. See the proof of Lemma 4 of Matula [7].
Lemma 2.3. Let \(\{Z_t : 1 \leq t \leq n\} \) be a strictly stationary sequence of negatively associated \(m \)-dimensional random vectors with \(EZ_1 = 0 \) and \(E \| Z_1 \|^2 < \infty \), where for a vector \(x \in \mathbb{R}^m \), denote its Euclidean norm by \(\|x\| \). Then, there is a positive constant \(A \) such that
\[
E \max_{1 \leq k \leq n} \left\| \sum_{t=1}^{k} Z_t \right\|^2 \leq Am^2 nE \| Z_1 \|^2. \tag{3}
\]

Proof. Note that
\[
\max_{1 \leq k \leq n} \left\| \sum_{t=1}^{k} Z_t \right\|^2 \leq m \max_{1 \leq k \leq n} \left| \sum_{t=1}^{k} Z_t^{(j)} \right|^2
\]
and by Lemma 2.2,
\[
E \max_{1 \leq k \leq n} \left| \sum_{t=1}^{k} Z_t^{(j)} \right|^2 \leq A \sum_{t=1}^{n} E \left| Z_t^{(j)} \right|^2
\leq A \sum_{t=1}^{n} E \| Z_t \|^2
= AnE \| Z_1 \|^2,
\]
where \(Z_t^{(j)} \) is the \(j \)-th component of \(Z_t \). Thus (3) follows. \(\square \)

Lemma 2.4. Let \(\{Z_t, t \geq 1\} \) be a strictly stationary sequence of negatively associated \(m \)-dimensional random vectors with \(E(Z_1) = \mathbf{0}, E\|Z_1\|^2 < \infty \). Let
\[
X_t = \sum_{j=1}^{\infty} A_j Z_{t-j}, \quad S_k = \sum_{t=1}^{k} X_t,
\]
\[
\tilde{X}_t = (\sum_{j=1}^{\infty} A_j) Z_t \quad \text{and} \quad \tilde{S}_k = \sum_{t=1}^{k} \tilde{X}_t.
\]
Assume
\[
\sum_{j=1}^{\infty} \|A_j\| < \infty \quad \text{and} \quad \sum_{j=1}^{\infty} A_j \neq 0_{m \times m}, \tag{4}
\]
where for any \(m \times m, m \geq 1 \), matrix \(A = (a_{ij}) \), \(\|A\| = \sum_{i=1}^{m} \sum_{j=1}^{m} |a_{ij}| \) and \(0_{m \times m} \) denotes the \(m \times m \) zero matrix. Then
\[
n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|\tilde{S}_k - S_k\| = o_p(1).
\]
Proof. First observe that
\[
\tilde{S}_k = \sum_{t=1}^{k} \left(\sum_{j=0}^{k-t} A_j \right) Z_t + \sum_{t=1}^{k} \left(\sum_{j=t}^{\infty} A_j \right) Z_t
\]
\[
= \sum_{t=1}^{k} \left(\sum_{j=0}^{t-1} A_j Z_{t-j} \right) + \sum_{t=1}^{k} \left(\sum_{j=t}^{\infty} A_j \right) Z_t
\]
and thus,
\[
\tilde{S}_k - S_k = -\sum_{t=1}^{k} \left(\sum_{j=t}^{\infty} A_j Z_{t-j} \right) + \sum_{t=1}^{k} \left(\sum_{j=t}^{\infty} A_j \right) Z_t
\]
\[
= I_1 + I_2 \text{ (say)}.
\]

To prove
\[
n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|I_1\| = o_p(1), \quad (5)
\]
note that
\[
n^{-1} E \max_{1 \leq k \leq n} \left\| \sum_{t=1}^{k} \sum_{j=t}^{\infty} A_j Z_{t-j} \right\|^2
\]
\[
= n^{-1} E \max_{1 \leq k \leq n} \left\| \sum_{j=1}^{\infty} \sum_{t=1}^{j \wedge k} A_j Z_{t-j} \right\|^2
\]
\[
\leq n^{-1} \left(\sum_{j=1}^{\infty} \|A_j\| \left\{ E \max_{1 \leq k \leq n} \left\| \sum_{t=1}^{j \wedge k} Z_{t-j} \right\|^2 \right\}^{\frac{1}{2}} \right)^2 \text{ by Minkowski inequality}
\]
\[
\leq A m^2 E \| Z_1 \|^2 \left[\sum_{j=1}^{\infty} \|A_j\| \left(\frac{j \wedge n}{n} \right)^{\frac{1}{2}} \right]^{2}
\]
by (3) and (4) and $E \| Z_1 \|^2 < \infty$. By the dominated convergence theorem the last term above tends to zero as $n \to \infty$. Thus (5) is proved by the Markov inequality.

Next, we show that
\[
n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|I_2\| = o_p(1). \quad (6)
\]

Write
\[
I_2 = I_{I_1} + I_{I_2},
\]
where
\[
I_{I_1} = A_1 Z_k + A_2 (Z_k + Z_{k-1}) + \cdots + A_k (Z_k + \cdots + Z_1)
\]
and
\[II_2 = (A_{k+1} + A_{k+2} + \cdots) (Z_k + \cdots + Z_1). \]

Let \(p_n \) be a sequence of positive integers such that
\[p_n \to \infty \text{ and } p_n/n \to 0 \text{ as } n \to \infty. \tag{7} \]

Then
\[
\begin{align*}
n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|II_2\| & \leq \left(\sum_{i=0}^{\infty} \|A_i\| \right) n^{-\frac{1}{2}} \max_{1 \leq k \leq p_n} \|Z_1 + \cdots + Z_k\| \\
& \quad + \left(\sum_{i>p_n} \|A_i\| \right) n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|Z_1 + \cdots + Z_k\| \\
& = o_p(1) + o_p\left(\sum_{i>p_n} \|A_i\| \right) \\
& = o_p(1)
\end{align*}
\]

by (4), (7) and \(E \| Z_1 \|^2 < \infty \). It remains to prove that
\[Y_n := n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|II_1\| = o_p(1). \]

To this end, define for each \(l \geq 1 \)
\[II_{1,l} = B_1Z_k + B_2(Z_k + Z_{k-1}) + \cdots + B_k(Z_k + \cdots + Z_1), \]
where
\[B_k = \begin{cases} A_k, & k \leq l \\ \mathbb{O}_{m \times m}, & k > l. \end{cases} \]

Let \(Y_{n,l} = n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \|II_{1,l}\| \). Clearly, for each \(l \geq 1 \),
\[Y_{n,l} = o_p(1). \tag{8} \]

On the other hand,
\[
\begin{align*}
n(Y_{n,l} - Y_n)^2 & \leq \max_{1 \leq k \leq n} \left(\sum_{i=1}^{k} (A_i - B_i)(Z_k + \cdots + Z_{k-i+1}) \right)^2 \\
& \leq \max_{l < k \leq n} \left(\sum_{i=l+1}^{k} \|A_i\| \cdot \|Z_k + \cdots + Z_{k-i+1}\| \right)^2 \\
& \leq \left(\sum_{i > l} \|A_i\| \right)^2 \max_{l < k \leq n} \max_{l < i \leq k} \|Z_k + \cdots + Z_{k-i+1}\|^2
\end{align*}
\]
\[
\leq 4 \left(\sum_{i>l} \|A_i\| \right)^2 \max_{l \leq j \leq n} \|Z_1 + \cdots + Z_j\|^2.
\]

From this result, (4) and \(E \|Z_1\|^2 < \infty\), for any \(\delta > 0\),

\[
\lim_{l \to \infty} \lim_{n \to \infty} \sup P(|Y_{n,l} - Y_n|^2 > \delta)
\leq \lim_{l \to \infty} \lim_{n \to \infty} \sup \frac{4\delta^{-1} \left(\sum_{i>l} \|A_i\| \right)^2 n^{-1} E \max_{l \leq j \leq n} \|Z_1 + \cdots + Z_j\|^2}{4Am^2 \delta^{-1} E \|Z_1\|^2 \lim_{l \to \infty} \left(\sum_{i>l} \|A_i\| \right)^2} = 0. \quad (9)
\]

In view of (8) and (9), it follows from Theorem 4.2 of Billingsley [1, p. 25] that \(Y_n = o_p(1)\). This completes the proof of Lemma 2.4.

Theorem 2.5. Let \(\{Z_t : t \geq 1\}\) be a strictly stationary negatively associated sequence of \(m\)-dimensional random vectors with \(E(Z_1) = O\) and \(E \|Z_1\|^2 < \infty\).

Let \(S_n = \sum_{t=1}^n Z_t\). If

\[
E \|Z_1\|^2 + 2 \sum_{t=2}^{\infty} \sum_{j=1}^m E(Z_t^{(j)})Z_t^{(j)} = \sigma_i^2 < \infty \quad (10)
\]

holds, then, as \(n \to \infty\),

\[
n^{-\frac{1}{2}} S_n \overset{D}{\to} N(O, \Gamma)
\]

with covariance matrix \(\Gamma = [\sigma_{kj}], \; k = 1, \ldots, m; \; j = 1, \ldots, m\),

\[
\sigma_{kj} = E(Z_1^{(k)}Z_1^{(j)}) + \sum_{t=2}^{\infty} \left[E(Z_1^{(k)}Z_t^{(j)}) + E(Z_1^{(j)}Z_t^{(k)}) \right]. \quad (11)
\]

Proof. By Theorem 12 in Newman [8] it follows from (10) that, for each \(j(1 \leq j \leq m)\),

\[
\lim_{n \to \infty} n^{-\frac{1}{2}} \sum_{t=1}^n Z_t^{(j)} = \sigma'_j Z'_j
\]

where \(Z'_j\) is standard normal and

\[
\sigma'_j^2 = E(Z_1^{(j)})^2 + 2 \sum_{t=2}^{\infty} E(Z_1^{(j)}Z_t^{(j)}) < \infty.
\]

Hence by the Cramer-Wold device (See Billingsley [1, pp. 48–49]) the desired result follows. \(\square\)
Theorem 2.6. Let \(\{Z_t, t \geq 1\} \) be a strictly stationary negatively associated sequence of \(m \)-dimensional random vectors with \(E(Z_1) = 0, E||X_t||^2 < \infty \) and \(\{X_t\} \) an \(m \)-dimensional linear process defined in (1). Set
\[
S_n = \sum_{t=1}^{n} X_t (S_0 = 0), \tilde{S}_n = \sum_{t=1}^{n} \tilde{X}_t
\]
as in Lemma 2.4. If (4) and (10) hold then
\[
n^{-\frac{1}{2}} S_n \xrightarrow{D} N(0, T)
\]
as \(n \to \infty \), (12)
where \(T = (\sum_{j=1}^{\infty} A_j) \Gamma(\sum_{j=1}^{\infty} A_j)' \) and \(\Gamma \) is defined as in (11).

Proof. First note that
\[
n^{-\frac{1}{2}} \tilde{S}_n = n^{-\frac{1}{2}} \left(\sum_{j=1}^{\infty} A_j \right) \sum_{t=1}^{n} Z_t
\]
and that \(n^{-\frac{1}{2}} \tilde{S}_n \xrightarrow{D} N(0, T) \) according to Theorem 2.5. Hence, \(n^{-\frac{1}{2}} S_n \xrightarrow{D} N(0, T) \) follows by applying Lemma 2.4 and Theorem 4.1 of Billingsley [1]. \(\Box \)

We now introduce another central limit theorem.

Theorem 2.7. Let \(\{Z_t, t \geq 1\} \) be a strictly stationary negatively associated sequence of \(m \)-dimensional random vectors with \(E(Z_1) = 0, E||X_1||^2 < \infty \) and let \(\{X_t\} \) be an \(m \)-dimensional linear process defined in (1). If
\[
\sum_{i=0}^{\infty} \sum_{j=i+1}^{\infty} ||A_j|| < \infty
\]
hold. Then
\[
n^{-\frac{1}{2}} \tilde{S}_n \xrightarrow{D} N(0, T)
\]
as \(n \to \infty \),
where \(T = (\sum_{j=1}^{\infty} A_j) \Gamma(\sum_{j=1}^{\infty} A_j)' \) and \(\Gamma \) is defined as in (11).

Proof. Letting \(\tilde{A}_i = \sum_{j=i+1}^{\infty} A_j \) and \(Y_t = \sum_{i=0}^{\infty} \tilde{A}_i Z_{t-i} \), which is well defined since \(\sum_{i=0}^{\infty} ||\tilde{A}_i|| < \infty \) by (13), we have
\[
X_t = \left(\sum_{i=0}^{\infty} A_i \right) Z_t - \tilde{A}_0 Z_t + \sum_{i=1}^{\infty} (\tilde{A}_i - \tilde{A}_{i-1}) Z_{t-i}
\]
\[
= \left(\sum_{i=0}^{\infty} A_i \right) Z_t + Y_{t-1} - Y_t
\]
which implies that
\[
S_n = \left(\sum_{i=0}^{\infty} A_i \right) \sum_{t=1}^{n} Z_t + Y_0 - Y_n.
\]
According to Theorem 2.5 we have \(n^{-\frac{1}{2}} \sum_{t=1}^{n} Z_{t} \rightarrow N(0, \Gamma) \) as \(n \rightarrow \infty \) and thus using this result on \((\sum_{i=0}^{\infty} A_{i}) \sum_{t=1}^{n} Z_{t} \), we have

\[
(\sum_{i=0}^{\infty} A_{i}) \sum_{t=1}^{n} Z_{t} \rightarrow N(0, T) \text{ as } n \rightarrow \infty.
\]

Hence, this theorem is proved if

\[
\frac{\sqrt{n} Y_{n}}{\sqrt{n}} \xrightarrow{p} 0 \text{ as } n \rightarrow \infty. \tag{14}
\]

To prove (14) it is sufficient to show that

\[
\frac{\sqrt{n} Y_{n}}{\sqrt{n}} \rightarrow 0 \text{ a.s. as } n \rightarrow \infty. \tag{15}
\]

But (15) follows from the fact that for any \(\epsilon > 0 \)

\[
\sum_{n=1}^{\infty} P \left(\frac{|Y_{n,j}|}{\sqrt{n}} > \epsilon \right) = \sum_{n=1}^{\infty} P(|Y_{0,j}| > \sqrt{n} \epsilon) < \infty,
\]

for all \(j \), where \(Y_{n,j} \) denotes the \(j \)-th component of \(Y_{n} \).

\[\square\]

REFERENCES

(T. S. Kim) Division of Mathematics and Informational Statistics and Institute of Basic Natural Science, WonKwang University, 344-2 Sinnyong-dong, Iksan, Jeonbuk 151-749, Korea
Email address: starkim@wonkwang.ac.kr

(M. H. Ko) Statistical Research Center for Complex System, Seoul National University, Seoul 151-742, Korea
Email address: kmh@srcs.snu.ac.kr

(M. H. Ro) Department of Informational Statistics, WonKwang University, 344-2 Sinnyong-dong, Iksan, Jeonbuk 151-749, Korea
Email address: mk800207@wonkwang.ac.kr