ON INTUITIONISTIC FUZZY R-SUBGROUPS OF NEAR-RINGS

YONG UK CHO* AND YOUNG BAE JUN

ABSTRACT. The notion of normal intuitionistic fuzzy R-subgroups in near-rings is introduced, and related properties are investigated. Characterization of an intuitionistic fuzzy R-subgroup is given. Using a collection of right R-subgroups, an intuitionistic fuzzy right R-subgroup is established. Using a chain of right R-subgroups, an intuitionistic fuzzy right R-subgroup is also established.

AMS Mathematics Subject Classification : 03F55, 03E72, 16Y30.
Key words and phrases : Right R-subgroup, (normal) intuitionistic fuzzy right R-subgroup.

1. Introduction

After the introduction of fuzzy sets by Zadeh [7], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [1] is one among them. For the details on intuitionistic fuzzy sets, we refer the reader to [2, 3]. Jun et al. [5] introduced the notion of an intuitionistic fuzzy ideal of a near-ring, and investigated some properties. Yon et al. [6] considered the intuitionistic fuzzification of a right (resp. left) R-subgroup of a near-ring. In this paper we investigate more properties of an intuitionistic fuzzy right R-subgroup, and introduce the notion of a normal intuitionistic fuzzy right R-subgroup. We give a characterization of an intuitionistic fuzzy R-subgroup. Using a collection of right R-subgroups [4], we establish an intuitionistic fuzzy right R-subgroup. Using a chain of right R-subgroups, we also construct an intuitionistic fuzzy right R-subgroup.
2. Preliminaries

By a near-ring we mean a non-empty set R with two binary operations \(\cdot\) and \(\cdot\) satisfying the following axioms:

(i) \((R, +)\) is a group,
(ii) \((R, \cdot)\) is a semigroup,
(iii) \(x \cdot (y + z) = x \cdot y + x \cdot z\) for all \(x, y, z \in R\).

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word “near-ring” instead of “left near-ring”. We denote \(xy\) instead of \(x \cdot y\). Note that \(x0 = 0\) and \(x(-y) = -xy\) but in general \(0x \neq 0\) for some \(x \in R\). A two-sided \(R\)-subgroup of a near-ring \(R\) is a subset \(H\) of \(R\) such that

(i) \((H, +)\) is a subgroup of \((R, +)\),
(ii) \(RH \subseteq H\),
(iii) \(HR \subseteq H\).

If \(H\) satisfies (i) and (ii) then it is called a left \(R\)-subgroup of \(R\). If \(H\) satisfies (i) and (iii) then it is called a right \(R\)-subgroup of \(R\). Let \(S\) be a nonempty set and let \(\mu_A\) and \(\gamma_A\) be two functions from \(S\) to \([0, 1]\) such that

\[
(\forall x \in S) \left(0 \leq \mu_A(x) + \gamma_A(x) \leq 1 \right).
\]

By the original definition of Atanassov in [1], an intuitionistic fuzzy set (IFS for short) is an object of the form: \(A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in S\}\). We consider it in a form of an ordered triple: \(A = \langle R; \mu_A, \gamma_A \rangle\) where \(\mu_A\) and \(\gamma_A\) are as above. An IFS \(A = \langle R; \mu_A, \gamma_A \rangle\) in a near-ring \(R\) is called an intuitionistic fuzzy subnear-ring of \(R\) (see [6]) if it satisfies

\[
\begin{align*}
\forall x, y \in R &\left(\mu_A(x - y) \geq \min\{\mu_A(x), \mu_A(y)\} \right), \\
\forall x, y \in R &\left(\gamma_A(x - y) \leq \max\{\gamma_A(x), \gamma_A(y)\} \right), \\
\forall x, y \in R &\left(\mu_A(xy) \geq \min\{\mu_A(x), \mu_A(y)\} \right), \\
\forall x, y \in R &\left(\gamma_A(xy) \leq \max\{\gamma_A(x), \gamma_A(y)\} \right).
\end{align*}
\]

3. (Normal) intuitionistic fuzzy \(R\)-subgroups

Definition 3.1. [6] An IFS \(A = \langle R; \mu_A, \gamma_A \rangle\) in a near-ring \(R\) is called an intuitionistic fuzzy right \(R\)-subgroup of \(R\) if it satisfies

\[
\begin{align*}
\forall x, y \in R &\left(\mu_A(x - y) \geq \min\{\mu_A(x), \mu_A(y)\} \right), \\
\forall x, y \in R &\left(\gamma_A(x - y) \leq \max\{\gamma_A(x), \gamma_A(y)\} \right).
\end{align*}
\]
Let \(A \) be an intuitionistic fuzzy right \(R \)-subgroup of a near-ring \(R \). Then the set
\[
R_A := \{ x \in R \mid \mu_A(x) = \mu_A(0), \gamma_A(x) = \gamma_A(0) \}
\]
is a right \(R \)-subgroup of \(R \).

Proof. Let \(x, y \in R \). Then \(\mu_A(x) = \mu_A(y) = \mu_A(0) \) and \(\gamma_A(x) = \gamma_A(y) = \gamma_A(0) \).
Since \(A = \langle R; \mu_A, \gamma_A \rangle \) is an intuitionistic fuzzy right \(R \)-subgroup, it follows that
\[
\mu_A(x - y) \geq \min\{\mu_A(x), \mu_A(y)\} = \mu_A(0), \\
\gamma_A(x - y) \leq \max\{\gamma_A(x), \gamma_A(y)\} = \gamma_A(0)
\]
so that
\[
\mu_A(x - y) = \mu_A(0) \quad \text{and} \quad \gamma_A(x - y) = \gamma_A(0).
\]
Thus \(x - y \in R_A \). For any \(x \in R_A \) and \(r \in R \), we have
\[
\mu_A(xr) \geq \mu_A(x) = \mu_A(0), \quad \gamma_A(xr) \leq \gamma_A(x) = \gamma_A(0).
\]
Hence \(xr \in R_A \), and consequently \(R_A \) is a right \(R \)-subgroup of \(R \).

Let \(A = \langle R; \mu_A, \gamma_A \rangle \) be an IFS in a set \(R \) and let \(\alpha, \beta \in [0,1] \) be such that \(\alpha + \beta \leq 1 \). Then the set
\[
R_A^{(\alpha,\beta)} := \{ x \in R \mid \mu_A(x) \geq \alpha, \gamma_A(x) \leq \beta \}
\]
is called an \((\alpha,\beta)\)-level subset of \(A = \langle R; \mu_A, \gamma_A \rangle \).

Theorem 3.3. Let \(A = \langle R; \mu_A, \gamma_A \rangle \) be an intuitionistic fuzzy right \(R \)-subgroup of a near-ring \(R \). Then \(R_A^{(\alpha,\beta)} \) is a right \(R \)-subgroup of \(R \) for every \((\alpha,\beta) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A) \) with \(\alpha + \beta \leq 1 \).

Proof. Let \(x, y \in R_A^{(\alpha,\beta)} \). Then \(\mu_A(x) \geq \alpha, \gamma_A(x) \leq \beta, \mu_A(y) \geq \alpha, \) and \(\gamma_A(y) \leq \beta \) which imply that
\[
\mu_A(x - y) \geq \min\{\mu_A(x), \mu_A(y)\} \geq \alpha, \\
\gamma_A(x - y) \leq \max\{\gamma_A(x), \gamma_A(y)\} \leq \beta.
\]
Thus \(x - y \in R_A^{(\alpha,\beta)} \). Let \(r \in R \) and \(x \in R_A^{(\alpha,\beta)} \). Then
\[
\mu_A(xr) \geq \mu_A(x) \geq \alpha \quad \text{and} \quad \gamma_A(xr) \leq \gamma_A(x) \leq \beta;
\]
hence \(xr \in R_A^{(\alpha,\beta)} \). Therefore \(R_A^{(\alpha,\beta)} \) is a right \(R \)-subgroup of \(R \).
Theorem 3.4. Let $A = \langle R; \mu_A, \gamma_A \rangle$ be an IFS in a near-ring R such that $R_A^{(\alpha, \beta)}$ is a right R-subgroup of R for every $(\alpha, \beta) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A)$ with $\alpha + \beta \leq 1$. Then $A = \langle R; \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right R-subgroup of R.

Proof. Let $x, y \in R$ and let $A(x) = (\alpha_1, \beta_1)$ and $A(y) = (\alpha_2, \beta_2)$, i.e.,

$$
\mu_A(x) = \alpha_1, \quad \gamma_A(x) = \beta_1, \quad \mu_A(y) = \alpha_2, \quad \gamma_A(y) = \beta_2.
$$

Then $x \in R_A^{(\alpha_1, \beta_1)}$ and $y \in R_A^{(\alpha_2, \beta_2)}$. We may assume that $(\alpha_1, \beta_1) \leq (\alpha_2, \beta_2)$, i.e., $\alpha_1 \leq \alpha_2$ and $\beta_1 \geq \beta_2$ without loss of generality. It follows that $R_A^{(\alpha_2, \beta_2)} \subseteq R_A^{(\alpha_1, \beta_1)}$ so that $x, y \in R_A^{(\alpha_1, \beta_1)}$. Since $R_A^{(\alpha_1, \beta_1)}$ is a right R-subgroup of R, we have $x - y \in R_A^{(\alpha_1, \beta_1)}$ and $xr \in R_A^{(\alpha_1, \beta_1)}$ for all $r \in R$. Thus

$$
\mu_A(x - y) \geq \alpha_1 = \min\{\alpha_1, \alpha_2\} = \min\{\mu_A(x), \mu_A(y)\},
\gamma_A(x - y) \leq \beta_1 = \max\{\beta_1, \beta_2\} = \max\{\gamma_A(x), \gamma_A(y)\},
\mu_A(xr) \geq \alpha_1 = \min\{\mu_A(x), \mu_A(y)\},
\gamma_A(xr) \leq \beta_1 = \max\{\gamma_A(x), \gamma_A(y)\}.
$$

Consequently, $A = \langle R; \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right R-subgroup of R. \hfill \square

Note that

$$
R_A^{(\alpha, \beta)} = \left\{ x \in R \mid \mu_A(x) \geq \alpha, \quad \gamma_A(x) \leq \beta \right\}
= \left\{ x \in R \mid \mu_A(x) \geq \alpha \right\} \cap \left\{ x \in R \mid \gamma_A(x) \leq \beta \right\}
= U(\mu_A; \alpha) \cap L(\gamma_A; \beta).
$$

Hence we have the following corollary.

Corollary 3.5. Let $A = \langle R; \mu_A, \gamma_A \rangle$ be an IFS in a near-ring R. Then $A = \langle R; \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right R-subgroup of R if and only if $U(\mu_A; \alpha)$ and $L(\gamma_A; \beta)$ are right R-subgroups of R for every $\alpha \in [0, \mu_A(0)]$ and $\beta \in [\gamma_A(0), 1]$ with $\alpha + \beta \leq 1$.

Corollary 3.6. Let I be a right R-subgroup of a near-ring R and let $A = \langle R; \mu_A, \gamma_A \rangle$ be an IFS in R defined by

$$
\mu_A(x) := \begin{cases}
\alpha_0 & \text{if } x \in I, \\
\alpha_1 & \text{otherwise},
\end{cases}
\gamma_A(x) := \begin{cases}
\beta_0 & \text{if } x \in I, \\
\beta_1 & \text{otherwise},
\end{cases}
$$

for all $x \in R$ where $0 \leq \alpha_1 < \alpha_0$, $0 \leq \beta_0 < \beta_1$, and $\alpha_i + \beta_i \leq 1$ for $i = 1, 2$. Then $A = \langle R; \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right R-subgroup of R.

Proposition 3.7. Let $A = \langle R; \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy right R-subgroup of a near-ring R and

$$(\alpha_1, \beta_1), \ (\alpha_2, \beta_2) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A)$$

with $\alpha_i + \beta_i \leq 1$ for $i = 1, 2$. Then $R_A^{(\alpha_1, \beta_1)} = R_A^{(\alpha_2, \beta_2)}$ if and only if $(\alpha_1, \beta_1) = (\alpha_2, \beta_2)$.

Proof. If $(\alpha_1, \beta_1) = (\alpha_2, \beta_2)$, then clearly $R_A^{(\alpha_1, \beta_1)} = R_A^{(\alpha_2, \beta_2)}$. Assume that $R_A^{(\alpha_1, \beta_1)} \neq R_A^{(\alpha_2, \beta_2)}$. Since $(\alpha_1, \beta_1) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A)$, there exists $x \in R$ such that $\mu_A(x) = \alpha_1$ and $\gamma_A(x) = \beta_1$. It follows that $x \in R_A^{(\alpha_1, \beta_1)} = R_A^{(\alpha_2, \beta_2)}$ so that $\alpha_1 = \mu_A(x) \geq \alpha_2$ and $\beta_1 = \gamma_A(x) \leq \beta_2$.

Similarly we have $\alpha_1 \leq \alpha_2$ and $\beta_1 \geq \beta_2$. Hence $(\alpha_1, \beta_1) = (\alpha_2, \beta_2)$. \qed

Theorem 3.8. Consider a chain of right R-subgroups of a near-ring R

$G_0 \subset G_1 \subset \cdots \subset G_n = R$,

where \subset denotes proper inclusion. Then there exists an intuitionistic fuzzy right R-subgroup of R whose upper and lower level right R-subgroups are exactly the right R-subgroups in the above chain.

Proof. Let $\{\alpha_k \mid k = 0, 1, \cdots, n\}$ (resp. $\{\beta_k \mid k = 0, 1, \cdots, n\}$) be a finite decreasing (resp. increasing) sequence in $[0, 1]$ such that $\alpha_i + \beta_i \leq 1$ for $i = 0, 1, \cdots, n$. Let $A = \langle R; \mu_A, \gamma_A \rangle$ be an IFS in R defined by

$$\mu_A(G_0) = \alpha_0, \ \gamma_A(G_0) = \beta_0, \ \mu_A(G_k \setminus G_{k-1}) = \alpha_k$$

and

$$\gamma_A(G_k \setminus G_{k-1}) = \beta_k \text{ for } 0 < k \leq n.$$

Let $x, y \in R$. If $x, y \in G_k \setminus G_{k-1}$, then

$$x - y \in G_k, \ \mu_A(x) = \alpha_k = \mu_A(y)$$

and

$$\gamma_A(x) = \beta_k = \gamma_A(y).$$

It follows that

$$\mu_A(x - y) \geq \alpha_k = \min\{\mu_A(x), \mu_A(y)\}$$

and

$$\gamma_A(x - y) \leq \beta_k = \max\{\gamma_A(x), \gamma_A(y)\}.$$

For $i > j$, if $x \in G_i \setminus G_{i-1}$ and $y \in G_j \setminus G_{j-1}$, then $\mu_A(x) = \alpha_i < \alpha_j = \mu_A(y)$, $\gamma_A(x) = \beta_i > \beta_j = \gamma_A(y)$ and $xy \in G_i$. Hence

$$\mu_A(x - y) \geq \alpha_i = \min\{\mu_A(x), \mu_A(y)\}$$
and
\[\gamma_A(x - y) \leq \beta_i = \max\{\gamma_A(x), \gamma_A(y)\}. \]
Now let \(x \in R \). Then there exists \(k \in \{0, 1, \ldots, n\} \) such that \(x \in G_k \setminus G_{k-1} \).
Since \(G_k \) is a right \(R \)-subgroup, we have \(xr \in G_k \) for all \(r \in R \). It follows that
\[\mu_A(xr) \geq \alpha_k = \mu_A(x), \quad \gamma_A(xr) \leq \beta_k = \gamma_A(x). \]
Therefore \(A = \langle R; \mu_A, \gamma_A \rangle \) is an intuitionistic fuzzy right \(R \)-subgroup of \(R \).
Note that \(\text{Im}(\mu_A) = \{\alpha_0, \alpha_1, \ldots, \alpha_n\} \) and \(\text{Im}(\gamma_A) = \{0, \beta_1, \ldots, \beta_n\} \). It follows that the upper level right \(R \)-subgroups and the lower level right \(R \)-subgroups of \(A = \langle R; \mu_A, \gamma_A \rangle \) are given by the chain of right \(R \)-subgroups
\[U(\mu_A; \alpha_0) \subset U(\mu_A; \alpha_1) \subset \cdots \subset U(\mu_A; \alpha_n) = R \]
and
\[L(\gamma_A; \beta_0) \subset L(\gamma_A; \beta_1) \subset \cdots \subset L(\gamma_A; \beta_n) = R, \]
respectively. Obviously, we have
\[U(\mu_A; \alpha_0) = \{x \in R \mid \mu_A(x) \geq \alpha_0\} = G_0, \]
\[L(\gamma_A; \beta_0) = \{x \in R \mid \gamma_A(x) \leq \beta_0\} = G_0. \]
We now prove that
\[U(\mu_A; \alpha_k) = G_k = L(\gamma_A; \beta_k) \quad \text{for} \quad 0 < k \leq n. \]
Clearly \(G_k \subseteq U(\mu_A; \alpha_k) \) and \(G_k \subseteq L(\gamma_A; \beta_k) \). If \(x \in U(\mu_A; \alpha_k) \), then \(\mu_A(x) \geq \alpha_k \) and so \(x \notin G_i \) for \(i > k \). Hence
\[\mu_A(x) \in \{\alpha_1, \alpha_2, \ldots, \alpha_k\}, \]
which implies \(x \in G_j \) for some \(j \leq k \). Since \(G_j \subseteq G_k \), it follows that \(x \in G_k \).
Consequently,
\[U(\mu_A; \alpha_k) = G_k \quad \text{for} \quad 0 \leq k \leq n. \]
Now if \(y \in L(\gamma_A; \beta_k) \), then \(\gamma_A(y) \leq \beta_k \) and thus \(y \notin G_i \) for \(i > k \). Hence
\[\gamma_A(y) \in \{\beta_1, \beta_2, \ldots, \beta_k\} \]
and so \(y \in G_j \) for some \(j \leq k \). Since \(G_j \subseteq G_k \), we have \(y \in G_k \). Therefore
\[L(\gamma_A; \beta_k) = G_k \quad \text{for} \quad 0 \leq k \leq n. \]
This completes the proof. \(\square \)

Theorem 3.9. Let \(\left\{ G_\alpha \mid \alpha \in \Lambda \subseteq [0, \frac{1}{2}] \right\} \) be a finite collection of right \(R \)-subgroups of a near-ring \(R \) such that \(R = \bigcup_{\alpha \in \Lambda} G_\alpha \), and for every \(\alpha, \beta \in \Lambda \), \(\alpha < \beta \) if and only if \(G_\beta \subseteq G_\alpha \). Then an IFS \(A = \langle R; \mu_A, \gamma_A \rangle \) in \(R \) defined by
\[\mu_A(x) = \sup\{\alpha \in \Lambda \mid x \in G_\alpha\} \quad \text{and} \quad \gamma_A(x) = \inf\{\alpha \in \Lambda \mid x \in G_\alpha\} \]
for all \(x \in R \) is an intuitionistic fuzzy right \(R \)-subgroup of \(R \).
Proof. According to Corollary 3.5, it is sufficient to show that the nonempty sets $U(\mu_A; \alpha)$ and $L(\gamma_A; \beta)$ are right R-subgroups of R for every $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$. In order to show that $U(\mu_A; \alpha)$ is a right R-subgroup, we divide into the following two cases:

(i) $\alpha = \sup\{\delta \in \Lambda \mid \delta < \alpha\}$

and

(ii) $\alpha \neq \sup\{\delta \in \Lambda \mid \delta < \alpha\}$.

Case (i) implies that

$$x \in U(\mu_A; \alpha) \iff x \in G_\delta \text{ for all } \delta < \alpha$$

$$\iff x \in \bigcap_{\delta < \alpha} G_\delta,$$

so that $U(\mu_A; \alpha) = \bigcap_{\delta < \alpha} G_\delta$, which is a right R-subgroup of R.

For the case (ii), we claim that

$$U(\mu_A; \alpha) = \bigcup_{\delta \geq \alpha} G_\delta.$$

If $x \in \bigcup_{\delta \geq \alpha} G_\delta$, then $x \in G_\delta$ for some $\delta \geq \alpha$. It follows that $\mu_A(x) \geq \delta \geq \alpha$ so that $x \in U(\mu_A; \alpha)$. This proves that

$$\bigcup_{\delta \geq \alpha} G_\delta \subset U(\mu_A; \alpha).$$

Now assume that $x \notin \bigcup_{\delta \geq \alpha} G_\delta$. Then $x \notin G_\delta$ for all $\delta \geq \alpha$. Since $\alpha \neq \sup\{\delta \in \Lambda \mid \delta < \alpha\}$, there exists $\varepsilon > 0$ such that $(\alpha - \varepsilon, \alpha) \cap \Lambda = \emptyset$. Hence $x \notin G_\delta$ for all $\delta > \alpha - \varepsilon$, which means that if $x \in G_\delta$ then $\delta \leq \alpha - \varepsilon$. Thus $\mu_A(x) \leq \alpha - \varepsilon < \alpha$, and so $x \notin U(\mu_A; \alpha)$. Therefore

$$U(\mu_A; \alpha) = \bigcup_{\delta \geq \alpha} G_\delta.$$

Next we show that $L(\gamma_A; \beta)$ is a right R-subgroup of R for all $\beta \in [\gamma_A(0), 1]$. We consider the following two cases:

(iii) $\beta = \inf\{\delta \in \Lambda \mid \beta < \delta\}$

and

(iv) $\beta \neq \inf\{\delta \in \Lambda \mid \beta < \delta\}$.

For the case (iii) we have

$$x \in L(\gamma_A; \beta) \iff x \in G_\delta \text{ for all } \beta < \delta$$

$$\iff x \in \bigcap_{\beta < \delta} G_\delta,$$

and hence $L(\gamma_A; \beta) = \bigcap_{\beta < \delta} G_\delta$, which is a right R-subgroup of R.
For the case (iv), we will show that
\[L(\gamma_A; \beta) = \bigcup_{\beta \geq \delta} G_{\delta}. \]
If \(x \in \bigcup_{\beta \geq \delta} G_{\delta} \), then \(x \in G_{\delta} \) for some \(\beta \geq \delta \). It follows that \(\gamma_A(x) \leq \delta \leq \beta \) so that \(x \in L(\gamma_A; \beta) \). Hence
\[\bigcup_{\beta \geq \delta} G_{\delta} \subset L(\gamma_A; \beta). \]
Conversely, if \(x \notin \bigcup_{\beta \geq \delta} G_{\delta} \), then \(x \notin G_{\delta} \) for all \(\delta \leq \beta \). Since \(\beta \neq \inf \{ \delta \in \Lambda \mid \beta < \delta \} \), there exists \(\varepsilon > 0 \) such that \((\beta, \beta + \varepsilon) \cap \Lambda = \emptyset \), which implies that \(x \notin G_{\delta} \) for all \(\delta < \beta + \varepsilon \), that is, if \(x \in G_{\delta} \), then \(\delta \geq \beta + \varepsilon \). Thus \(\gamma_A(x) \geq \beta + \varepsilon > \beta \), that is, \(x \notin L(\gamma_A; \beta) \). Therefore
\[L(\gamma_A; \beta) \subset \bigcup_{\beta \geq \delta} G_{\delta} \]
and consequently \(L(\gamma_A; \beta) = \bigcup_{\beta \geq \delta} G_{\delta} \). This completes the proof. \(\square \)

Definition 3.10. An intuitionistic fuzzy right \(R \)-subgroup \(A = \langle R; \mu_A, \gamma_A \rangle \) of a near-ring \(R \) is said to be normal if there exists \(x \in R \) such that \(\mu_A(x) = 1 \) and \(\gamma_A(x) = 0 \).

Note that if an intuitionistic fuzzy right \(R \)-subgroup \(A = \langle R; \mu_A, \gamma_A \rangle \) of a near-ring \(R \) is normal, then \(\mu_A(0) = 1 \) and \(\gamma_A(0) = 0 \); hence \(A = \langle R; \mu_A, \gamma_A \rangle \) is a normal intuitionistic fuzzy right \(R \)-subgroup of \(R \) if and only if \(\mu_A(0) = 1 \) and \(\gamma_A(0) = 0 \).

Example 3.11. (1) Let \(R = \{a, b, c, d\} \) be a set with two binary operations as follows:

<table>
<thead>
<tr>
<th>+</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Then \((R, +, \cdot) \) is a near-ring. We define an IFS \(A = \langle R; \mu_A, \gamma_A \rangle \) in \(R \) by
\[A = \langle R; \left(\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array} \right), \left(\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
\frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5}
\end{array} \right) \rangle. \]
Then $A = \langle R; \mu_A, \gamma_A \rangle$ is a normal intuitionistic fuzzy subgroup of $(R, +)$, and we have that

\[
\mu_A(xr) \geq \mu_A(x) \quad \text{and} \quad \gamma_A(xr) \leq \gamma_A(x) \quad \text{for all} \quad r, x \in R.
\]

Hence $A = \langle R; \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right R-subgroup of R.

(2) Let $R = \{a, b, c, d\}$ be a set with two binary operations as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Then $(R, +, \cdot)$ is a near-ring. We define an IFS $B = \langle R; \mu_B, \gamma_B \rangle$ in R by

\[
B = \langle R; \left(\begin{array}{cccc}
a & b & c & d \\
a & a & a & a \\
b & a & a & a \\
c & a & a & a \\
d & a & a & a \\
\end{array}\right)\rangle.
\]

Then $B = \langle R; \mu_B, \gamma_B \rangle$ is a normal intuitionistic fuzzy subgroup of $(R, +)$, and we have that

\[
\mu_B(xr) \geq \mu_B(x) \quad \text{and} \quad \gamma_B(xr) \leq \gamma_B(x) \quad \text{for all} \quad r, x \in R.
\]

Hence $B = \langle R; \mu_B, \gamma_B \rangle$ is an intuitionistic fuzzy right R-subgroup of R.

Note that every intuitionistic fuzzy R-subgroup of a near-ring R is an intuitionistic fuzzy subnear-ring of R (see [6]). But the converse is not true in general as seen in the following example.

Example 3.12. (1) Let $R = \{a, b, c, d\}$ be a set with two binary operations as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Then $(R, +, \cdot)$ is a near-ring. We define an IFS $A = \langle R; \mu_A, \gamma_A \rangle$ in R by

\[
A = \langle R; \left(\begin{array}{cccc}
a & b & c & d \\
a & a & a & a \\
b & a & a & a \\
c & a & a & a \\
d & a & a & a \\
\end{array}\right)\rangle.
\]

Then $A = \langle R; \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy subnear-ring of R. But $A = \langle R; \mu_A, \gamma_A \rangle$ is not an intuitionistic fuzzy right R-subgroup of R since

\[
\mu_A(b \cdot c) = \mu_A(c) = 0.4 < 0.5 = \mu_A(b)
\]
and/or
\[\gamma_A(b \cdot c) = \gamma_A(c) = 0.5 > 0.3 = \gamma_A(b). \]

(2) Let \(\mathbb{R} \) be a ring of real numbers with the usual addition “+” and multiplication “⋅”. Then \((\mathbb{R}, +, \cdot) \) is a near-ring. Let \(B = (\mathbb{R}; \mu_B, \gamma_B) \) be an IFS in \(\mathbb{R} \) defined by

\[
\mu_B(r) := \begin{cases}
1 & \text{if } r = 0, \\
\frac{1}{2} & \text{if } r \in \mathbb{Z} \setminus \{0\}, \\
\frac{1}{4} & \text{if } r \in \mathbb{Q} \setminus \mathbb{Z}, \\
0 & \text{if } r \in \mathbb{R} \setminus \mathbb{Q},
\end{cases}
\]

\[
\gamma_B(r) := \begin{cases}
0 & \text{if } r = 0, \\
\frac{1}{4} & \text{if } r \in \mathbb{Z} \setminus \{0\}, \\
\frac{1}{2} & \text{if } r \in \mathbb{Q} \setminus \mathbb{Z}, \\
1 & \text{if } r \in \mathbb{R} \setminus \mathbb{Q},
\end{cases}
\]

for \(r \in \mathbb{R} \) where \(\mathbb{Q} \) and \(\mathbb{Z} \) are rings of the rational numbers and the integers, respectively. Then \(B = (\mathbb{R}; \mu_B, \gamma_B) \) is an intuitionistic fuzzy subnear-ring of \(\mathbb{R} \). But

\[
\mu_B(2 \cdot \frac{1}{3}) = \mu_B(\frac{2}{3}) = \frac{1}{4} < \frac{1}{2} = \mu_B(2)
\]

and/or

\[
\gamma_B(2 \cdot \frac{1}{3}) = \gamma_B(\frac{2}{3}) = \frac{1}{2} > \frac{1}{4} = \gamma_B(2).
\]

Hence \(B = (\mathbb{R}; \mu_B, \gamma_B) \) is not an intuitionistic fuzzy right \(\mathbb{R} \)-subgroup of \(\mathbb{R} \).

Theorem 3.13. Let \(A = (\mathbb{R}; \mu_A, \gamma_A) \) be an intuitionistic fuzzy right \(\mathbb{R} \)-subgroup of a near-ring \(R \) and let \(\mu_{A+} \) and \(\gamma_{A+} \) be fuzzy sets in \(R \) defined by

\[\mu_{A+}(x) = \mu_A(x) + 1 - \mu_A(0), \quad \gamma_{A+}(x) = \gamma_A(x) - \gamma_A(0) \]

for all \(x \in R \) respectively. If

\[\mu_{A+}(x) + \gamma_{A+}(x) \leq 1 \]

for all \(x \in R \), then

\[A^+ = (\mathbb{R}; \mu_{A+}, \gamma_{A+}) \]

is a normal intuitionistic fuzzy right \(\mathbb{R} \)-subgroup of \(R \) containing \(A = (\mathbb{R}; \mu_A, \gamma_A) \).

Proof. Assume that \(\mu_{A+}(x) + \gamma_{A+}(x) \leq 1 \) for all \(x \in R \). Then \(A^+ = (\mathbb{R}; \mu_{A+}, \gamma_{A+}) \) is an IFS in \(R \). Let \(x, y \in R \). Then

\[
\min \left\{ \mu_{A+}(x), \mu_{A+}(y) \right\} = \min \left\{ \mu_A(x) + 1 - \mu_A(0), \mu_A(y) + 1 - \mu_A(0) \right\}
\]

\[= \min \left\{ \mu_A(x), \mu_A(y) \right\} + 1 - \mu_A(0) \]

\[\leq \mu_A(x - y) + 1 - \mu_A(0) \]

\[= \mu_{A+}(x - y), \]
max \left\{ \gamma_A^+(x), \gamma_A^+(y) \right\} = \max \left\{ \gamma_A(x) - \gamma_A(0), \gamma_A(y) - \gamma_A(0) \right\} \\
= \max \left\{ \gamma_A(x), \gamma_A(y) \right\} - \gamma_A(0) \\
\geq \gamma_A(x - y) - \gamma_A(0) \\
= \gamma_A^+(x - y),

and for all \(x, r \in R \), we have

\[
\begin{align*}
\mu_{A^+}(xr) &= \mu_A(xr) + 1 - \mu_A(0) \\
&\geq \mu_A(x) + 1 - \mu_A(0) \\
&= \mu_{A^+}(x) \\
\gamma_{A^+}(xr) &= \gamma_A(xr) - \gamma_A(0) \\
&\leq \gamma_A(x) - \gamma_A(0) \\
&= \gamma_{A^+}(x).
\end{align*}
\]

Hence \(A^+ = (R; \mu_{A^+}, \gamma_{A^+}) \) is an intuitionistic fuzzy right \(R \)-subgroup of \(R \).

Clearly \(\mu_{A^+}(0) = 1, \ \gamma_{A^+}(0) = 0, \ \mu_A \subset \mu_{A^+} \) and \(\gamma_A \supset \gamma_{A^+} \).

This completes the proof. \(\Box \)

Corollary 3.14. Let \(\mu_{A^+}, \gamma_{A^+} \) and \(A = (R; \mu_A, \gamma_A) \) be as in Theorem 3.13 such that

\[
\mu_{A^+}(x) + \gamma_{A^+}(x) \leq 1 \text{ for all } x \in R.
\]

If \(\mu_{A^+}(x) = 0 \) and \(\gamma_{A^+}(x) = 1 \) for some \(x \in R \), then \(\mu_A(x) = 0 \) and \(\gamma_A(x) = 1 \).

Proof. Straightforward. \(\Box \)

Theorem 3.15. Let \(A = (R; \mu_A, \gamma_A) \) and \(B = (R; \mu_B, \gamma_B) \) be intuitionistic fuzzy right \(R \)-subgroups of a near-ring \(R \). If \(A \subset B \), that is, \(\mu_A \subset \mu_B \) and \(\gamma_A \supset \gamma_B \), and \(A(0) = B(0) \), that is, \(\mu_A(0) = \mu_B(0) \) and \(\gamma_A(0) = \gamma_B(0) \), then \(R_A \subset R_B \).

Proof. Assume that \(A \subset B \) and \(A(0) = B(0) \). If \(x \in R_A \), then

\[
(\forall x \in R) \left(\mu_B(x) \geq \mu_A(x) = \mu_A(0) = \mu_B(0) \right).
\]

\[
(\forall x \in R) \left(\gamma_B(x) \leq \gamma_A(x) = \gamma_A(0) = \gamma_B(0) \right).
\]

Since \(\mu_B(0) \geq \mu_B(x) \) and \(\gamma_B(x) \geq \gamma_B(0) \) for all \(x \in R \), it follows that \(\mu_B(x) = \mu_B(0) \) and \(\gamma_B(x) = \gamma_B(0) \) so that \(x \in R_B \). This completes the proof. \(\Box \)
Corollary 3.16. If \(A = \langle R; \mu_A, \gamma_A \rangle \) and \(B = \langle R; \mu_B, \gamma_B \rangle \) are normal intuitionistic fuzzy right \(R \)-subgroups of a near-ring \(R \) satisfying \(A \subset B \), then \(R_A \subset R_B \).

4. Conclusions

We gave a characterization of an intuitionistic fuzzy right \(R \)-subgroup in a near-ring \(R \), and investigated some properties. We established an intuitionistic fuzzy right \(R \)-subgroup by using a collection of right \(R \)-subgroups and a chain of right \(R \)-subgroups, respectively. We considered the notion of a normal intuitionistic fuzzy right \(R \)-subgroup.

Future research will focus on studying the intuitionistic fuzzification of a right \(R \)-subgroup in a near-ring \(R \) by using a triangular norm, on studying the Cartesian product of intuitionistic fuzzy right \(R \)-subgroups, and on considering intuitionistic fuzzy (congruence) relations on near-rings.

References

Y. U. Cho received his BS from Kyung Pook National University and Ph.D also at Kyung Pook National University under the direction of Prof. Young Soo Park in 1987. He was four times visiting professor, one time at the U. of Louisiana at Lafayette (one year 1996-97), second time, at Ohio University at Athens (one year 2002-03), other times, at Okayama University in Japan (1999 one month, 2004 one month). Now he is members of the editorial board of JP-Journal of Algebra (India) and East Asian Math Journal from 1999 until now. His research interests focus on the theory of near-rings, in addition to application of ring and module theory.

Department of Mathematic Education, College of Education, Silla University, Pusan 617-736, Korea

Y. B. Jun has been an educator and research mathematician since 1982, mostly at the Gyeongsang National University; and a member of the editorial board of Far East Journal of
Mathematical Science (India) since 1998, and Quasigroups and Related Systems (Moldova) since 2000. He did postdoctoral work (one year, 1989-90, supported by KOSEF) at the University of Alberta in Alberta, Canada; and worked for one year (1996-97) as a visiting professor at the Northwest University in Xian, China (supported by LG Yonam Foundation).

His research interests focus on the structure theory of BCK/BCI-algebras, Hilbert algebras, (lattice) implication algebras and negatively partially ordered semigroups, and fuzzy and hyper theory of such algebraic structures. Jun is a co-author of the text *BCK-algebras* with J. Meng which is an approachable introduction to BCK/BCI-algebras.

Department of Mathematic Education, Gyeongsang National University, Chinju 660-701, Korea.

e-mail: ybjun@gsnu.ac.kr jamjana@korea.com