COUNTABLE RINGS WITH ACC ON ANNIHILATORS

YASUYUKI HIRANO AND HONG KEE KIM

Abstract. We consider countable rings with ascending chain condition on right annihilators. We determine the structure of a countable right p-injective Baer ring, a countable semiprime quasi-Baer ring and a countable quasi-Baer biregular ring.

1. Introduction

Rangaswamy[11, Theorem 1] proved that a countable regular Baer ring is a semisimple Artinian ring. Kim and Park[9] showed that in this theorem, the condition that “R is countable” can be replaced by the condition that “R has only countably many idempotents”. Recently, Birkenmeier, Kim and Park[2] studied rings with countably many direct summands. Recall that a ring is orthogonally finite if it has no infinite sets of nonzero orthogonal idempotents. A Baer ring is a ring in which the left (and right) annihilator of every subset is generated by an idempotent (see [12, Lemma 3.8.1, p.78]). From the proof of [11, Theorem 1] we know that a Baer ring satisfies the ascending chain condition on right ideals if and only if it is orthogonally finite. Rangaswamy’s proof consists of the following observation: (1) A countable Baer ring has only countably many right annihilators; (2) If a ring has only countably many right annihilators, it must be orthogonally finite; (3) An orthogonally finite von Neumann regular ring is a semisimple Artinian ring. In this paper, we refine the above observation, and then generalize Rangaswamy[11, Theorem 1]. First we prove some preliminary results. Next we consider p-injective rings. Clearly a von Neumann regular ring is a p-injective ring. We prove that a countable right p-injective Baer ring is a semisimple Artinian ring. Finally we consider semiprime quasi-Baer
rings. We prove that a countable semiprime quasi-Baer ring is a finite direct sum of prime rings and that a countable quasi-Baer biregular ring is a finite direct sum of simple rings.

2. Preliminary results

For a subset X of a ring R, $r(X)$ (resp. $l(X)$) denote the right (resp. left) annihilator of X in R. First we consider the relationship between the orthogonally finiteness, the ascending chain condition (ACC) on right annihilators and the descending chain condition (DCC) on right annihilators.

Theorem 2.1. Let R be a ring. Then the following statements are equivalent:

1. R satisfies ACC (resp. DCC) on right annihilators;
2. R is orthogonally finite and R satisfies ACC (resp. DCC) on right annihilators containing no nonzero idempotents.

Proof. (1) \Rightarrow (2) is obvious.

(2) \Rightarrow (1). Assume that R is orthogonally finite and R satisfies ACC on right annihilators containing no nonzero idempotents. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of right annihilators. Since R is orthogonally finite, $I = \bigcup I_i$ contains no infinite set of orthogonal idempotents. Hence there exists an idempotent $e \in I$ such that $(1-e)I$ contains no nonzero idempotent. Then $e \in I_j$ for some j. By hypothesis on e, $(1-e)I_j \subseteq (1-e)I_{j+1} \subseteq \cdots$ is an ascending chain of right annihilators containing no nonzero idempotents. Then there exists $k \geq j$ such that $(1-e)I_k = (1-e)I_{k+1} = \cdots$. Since $e \in I_j$, $I_m = eR \oplus (1-e)I_m$ for all $m \geq j$. Therefore $I_k = eR \oplus (1-e)I_k = eR \oplus (1-e)I_{k+m} = I_{k+m}$ for all $m \geq 0$.

Next assume that R is orthogonally finite and R satisfies DCC on right annihilators containing no nonzero idempotents. Let $I_1 \supseteq I_2 \supseteq \cdots$ be a descending chain of right annihilators. Since R is orthogonally finite, $I = \bigcap I_i$ contains an idempotent e such that $(1-e)I$ contains no nonzero idempotent. We can easily see that there exists an positive integer j such that the right annihilator $(1-e)I_j$ contains no nonzero idempotent. Then there exists $k \geq j$ such that $(1-e)I_k = (1-e)I_{k+1} = \cdots$. Therefore $I_k = eR \oplus (1-e)I_k = eR \oplus (1-e)I_{k+m} = I_{k+m}$ for all $m \geq 0$.\[\square\]

The following example shows that the conditions in (2) of Theorem 2.1...
are not superfluous.

Example 2.2. Let F be a field and let $A = \prod_{i=1}^{\infty} A_i$, where $A_i = F[x]$ is the polynomial ring over F. Then A satisfies ACC (resp. DCC) on right annihilators containing no nonzero idempotents, but A is not orthogonally finite.

Next, let R be the subring of A generated by $\bigoplus_{i=1}^{\infty} S_i$ and 1_A, where $S_i = xF[x]$ is the ideal of A_i generated by x for all $i = 1, 2, \ldots$. Then R is a ring with only idempotents 0 and 1_A, but R does not satisfy ACC (resp. DCC) on right annihilators containing no nonzero idempotents.

As an immediate corollary of Theorem 2.1, we have the following.

Corollary 2.3. For a ring R the following statements are equivalent:

1. Every nonzero right annihilators in R contains a nonzero idempotent and R is orthogonally finite;
2. R is an orthogonally finite Baer ring;
3. Every nonzero right annihilator in R contains a nonzero idempotent and R satisfies ACC on right annihilators.

In the proof of [11, Theorem 1], Rangaswamy used the fact that a countable Baer ring has only countably many right annihilators. More generally, if every right annihilator of a countable ring R is a right annihilator of some finite subset of R, then R has only countably many right annihilators. In fact a countable ring satisfying the descending chain condition on right annihilators has this property. The following proposition was proved by Faith [3, Corollary 2]. However we give a more direct proof of it.

Proposition 2.4. Then the following statements are equivalent:

1. A ring R satisfies DCC on right annihilators;
2. For each nonempty subset S of R, there exists a finite subset S' of S such that $r(S) = r(S')$.

Proof. (1) \Rightarrow (2). Let S be a nonempty subset of R. Let $a_1 \in S$. If $r(S) \subseteq r(a_1)$, there exists $a_2 \in S$ such that $r(a_1) \supseteq r(a_1, a_2)$. Continuing this process, we obtain a proper descending chain of right annihilators. Since R satisfies DCC on right annihilators, $r(S) = r(a_1, \ldots, a_n)$ for some $a_1, \ldots, a_n \in S$.

(2) \Rightarrow (1). Let $r(S_1) \supseteq r(S_2) \supseteq \cdots$ be a descending chain of right annihilators. We can easily see that $\bigcap_i r(S_i) = r(\bigcup_i S_i)$. By hypothesis, there exists a finite subset S' of $\bigcup_i S_i$ such that $r(S') = r(\bigcup_i S_i)$. Since
If a countable ring R satisfies ACC or DCC on right annihilators, then R has only countably many right annihilators.

Proof. If R satisfies DCC on right annihilators, then the set of right annihilators is countable by Proposition 2.4. If R satisfies ACC on right annihilators, then R satisfies DCC on left annihilators. Then the set of left annihilators is countable. Since there is a one to one correspondence between the set of left annihilators and the set of right annihilators, the set of right annihilators is also countable.

3. p-injective rings

Let R be a ring with identity. A right R-module M is said to be p-injective if given any principal right ideal I and any R-homomorphism $\sigma : I \to M$, there exists an R-homomorphism $\hat{\sigma} : R \to M$ that extends σ. A ring R is called a right p-injective ring if R is p-injective. This notion was first introduced by Ikeda and Nakayama[7]. It is easily seen that a von Neumann regular ring is nonsingular and right p-injective. For other examples of nonsingular p-injective rings, see [6]. The Jacobson radical of R is denoted by $J(R)$.

The following generalizes [9, Theorem 8].

Theorem 3.1. Let R be a right nonsingular right p-injective ring. Then the following are equivalent:

1. R satisfies ACC on right annihilators;
2. R has a finite right uniform dimension;
3. R is a semisimple Artinian ring.

Proof. (1) \Rightarrow (3). By [7], a ring R is right p-injective if and only if every principal left ideal of R is a left annihilator. Since R satisfies ACC on right annihilators, R satisfies DCC on left annihilators. Hence R satisfies DCC on principal left ideals, and hence R is a right perfect ring. By [12, Corollary 8.5.4, p.190], R is semiprimary. Suppose that $J(R) \neq 0$. Let $r(a)$ be maximal in $\{r(x) \mid 0 \neq x \in J(R)\}$. Since R is left nonsingular, $r(a)$ is not essential. Hence we can choose a nonzero element $b \in R$ such that $r(a) \cap bR = 0$. Since R is right semi-artinian, we may assume that bR is a minimal right ideal of R. Since $ab \neq 0$, $bR \cong abR$. Since $r(ab) \supseteq r(b)$ and $r(b)$ is maximal right ideal of R, $r(ab)$ is also maximal right ideal of R. Therefore $r(ab)$ is a maximal left ideal of R. By [9, Theorem 8], R is semisimple Artinian.
Countable rings with ACC on annihilators

Let \(r(b) = r(ab) \). Hence \(Rb = l(r(b)) = l(r(ab)) = Rab \). Hence \(b = cab \) for some \(c \in R \), and so \(b \in r(a - aca) \). Since \(r(a) \) is maximal in \(\{ r(x) \mid 0 \neq x \in J(R) \} \), we conclude that \(a - aca = 0 \). Then \(J(R) \) contains a nonzero idempotent \(ac \), a contradiction. Therefore \(J(R) = 0 \), and hence \(R \) is a semisimple Artinian ring.

\((3) \Rightarrow (2)\) is clear.

\((2) \Rightarrow (1)\). Let \(Q \) denote the maximal right ring of quotients of \(R \). It is well-known that \(Q \) is a von Neumann regular ring. Since \(R_R \) is an essential \(R \)-submodule of \(Q_R \) and since \(R_R \) has finite uniform dimension, \(Q_Q \) is also finite uniform dimension. Since \(Q \) is regular, this implies \(Q \) is Artinian semisimple. Since \(Q \) satisfies ACC on right annihilators, the subring \(R \) also satisfies the same condition.

Using Theorem 3.1, we can slightly generalize [11, Theorem 1] as follows.

Corollary 3.2. A countable right p-injective Baer ring is a semisimple Artinian ring.

Proof. It is well known that a Baer ring is right and left nonsingular. From his proof of [11, Theorem 1] we know that a countable Baer ring is orthogonally finite. Hence by Corollary 2.3, \(R \) satisfies ACC on right annihilators. Hence the assertion follows from Theorem 3.1.

\(\square\)

A ring \(R \) is said to be of bounded index (of nilpotency) if there exists a positive integer \(n \) such that \(a^n = 0 \) for each nilpotent element \(a \) of \(R \). If \(n \) is the least such integer, we say that \(R \) has index \(n \). For an example, it is well-known that any semiprime PI-ring is of bounded index ([6, Theorem 10.8.2]).

In [6, Proposition 1], we proved that if \(R \) is a semiprime p-injective ring of bounded index, then \(R \) is strongly \(\pi \)-regular. The following corollary shows that the structure of a prime right p-injective ring of bounded index is more simple.

Corollary 3.3. Let \(R \) be a prime right p-injective ring of bounded index. Then \(R \) is a simple Artinian ring.

Proof. By [5, Proposition 4], \(R \) is right nonsingular. Then, by [5, Proposition 5], \(R \) satisfies ACC on right annihilators. Hence the assertion follows from Theorem 3.1.

\(\square\)
4. Semiprime rings

Let \(R \) be a ring. A family \(\{ S_i \subseteq R \mid i \in I \} \) of subsets of \(R \) is said to be independent with respect to right annihilators if, for any distinct subsets \(J, K \) of \(I \), \(r(\bigcup_{j \in J} S_j) \neq r(\bigcup_{k \in K} S_k) \). The following lemma is trivial.

Lemma 4.1. If \(R \) has only countably many right annihilators (resp. right annihilators of ideals), then \(R \) has no infinite family of subsets (resp. ideals) of \(R \) which is independent with respect to right annihilators.

A ring \(R \) is called *quasi-Baer* if the right annihilator of every ideal of \(R \) is generated by an idempotent of \(R \).

Proposition 4.2. Let \(R \) be a countable semiprime ring. Then \(R \) is a quasi-Baer ring if and only if \(R \) is a finite direct sum of prime rings.

Proof. Obviously a finite direct sum of prime rings is quasi-Baer. Conversely suppose that \(R \) is quasi-Baer. Then, since \(R \) is countable, \(R \) has only countably many right annihilators of ideals. Then by Lemma 4.1, the \(R\)–\(R \)-bimodule \(R \) has finite uniform dimension, say \(n \). Hence \(R \) contains a direct sum \(I_1 \oplus \cdots \oplus I_n \) where each \(I_i \) is a nonzero ideal of \(R \). If we set \(R_k = r(\sum_{i \neq k} I_i) \) for each \(k = 1, \cdots, n \), then each \(R_k \) is a prime ring and \(R = R_1 \oplus \cdots \oplus R_n \). \(\square \)

A ring \(R \) is *biregular* if the principal ideal \((a) \) generated by every \(a \) has the form \((e) \) where \(e \) is a central idempotent (see [8, p.210]).

Corollary 4.3. A countable biregular quasi-Baer ring is a finite direct sum of simple rings.

Proof. Since a biregular ring is semiprime, by Proposition 4.2 \(R \) is a finite direct sum of a prime rings. Obviously a prime biregular ring is a simple ring. \(\square \)

Proposition 4.4. Let \(R \) be a countable semiprime ring of bounded index. Then the following are equivalent:

1. \(R \) has only countably many right annihilators;
2. There exists a positive integer \(n \) such that every chain of right annihilators in \(R \) has at most \(n \) proper inclusions;
3. \(R \) satisfies ACC on right annihilators.
Proof. (1) ⇒ (2). By Lemma 4.1, there are uniform ideals \(I_1, \ldots, I_m \) of \(R \) such that \(I_1 \oplus \cdots \oplus I_m \) is an essential (right) ideal of \(R \). We shall show that \(r(I_i) \) is a prime ideal of \(R \) for each \(i = 1, 2, \ldots, m \). Let \(I, J \) be ideals of \(R \) such that \(IJ \subseteq r(I_i) \) and suppose that \(I_i, J \neq 0 \). Then \((I_1 \oplus \cdots \oplus I_{i-1} \oplus I_i \oplus I_{i+1} \oplus \cdots \oplus I_m)I, J = 0 \). Since \((I_1 \oplus \cdots \oplus I_{i-1} \oplus I_i \oplus I_{i+1} \oplus \cdots \oplus I_m) \) is an essential right ideal of \(R \) and since \(R \) is nonsingular by [5, Proposition 4], we have \(I_i, J = 0 \). Hence each \(r(I_i) \) is a prime ideal of \(R \). We also have that \(\bigcap_{i=1}^n r(I_i) = r(I_1 \oplus \cdots \oplus I_m) = 0 \). Hence \(R \) is embedded in \(\bigoplus_{i=1}^n R/r(I_i) \). Let \(k \) be the nilpotency index of \(R \). Then the index of each \(R/r(I_i) \) is equal to or less than \(k \) by [1, Lemma 3]. Hence, by [5, Proposition 5], every chain of right annihilators in \(R/r(I_i) \) has at most \(k \) proper inclusions. Since \(R \) is embedded in \(\bigoplus_i R/r(I_i) \), every chain of right annihilators in \(R \) has at most \(mk \) proper inclusions.

(2) ⇒ (3). This is trivial.

(3) ⇒ (1). This follows from Corollary 2.5. \(\square \)

Lanski [10, Theorem 2] proved that if \(R \) is a semiprime PI-ring with infinite center \(C \), then \(|R| \leq 2^{|C|} \), where \(|R| \) (resp. \(|C| \)) denotes the cardinality of \(R \) (resp. \(C \)).

The following shows that if \(C \) is countable and if \(C \) has only countably many right annihilators then \(|R| = |C| \).

Corollary 4.5. Let \(R \) be a semiprime PI-ring with center \(C \). Then the following are equivalent:

1. \(R \) is countable and it has only countably many right annihilators;
2. \(C \) is countable and it has only countably many right annihilators;
3. \(R \) is a countable semiprime Goldie ring.

Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (3). Since \(R \) is semiprime, \(C \) has no nonzero nilpotent elements. By Proposition 4.4, \(C \) satisfies ACC on annihilators in \(C \). Then by Formanek [4, Theorem 9] \(R \) is semiprime Goldie. Now we can easily see that \(R \) is also countable.

(3) ⇒ (1). By [6, Theorem 10.8.2] \(R \) is of bounded index. Hence this follows from Proposition 4.4. \(\square \)

Acknowledgments. The authors would like to thank the referee for his helpful comments and suggestions. This paper was written while the second named author visited Okayama University in Japan. He is grateful to the staffs of Department of Mathematics of Okayama University for their hospitality. The second named author was supported by
the Grant No.R05-2002-000-00206-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

References

Yasuuki Hirano, Department of Mathematics, Okayama University, Okayama 700-8530, Japan
E-mail: yhirano@math.okyama-u.ac.jp

Hong Kee Kim, Department of Mathematics, Gyeongsang National University, Jinju 660-701, Korea
E-mail: hkkim@gaechuk.gsu.ac.kr