k-TH ROOTS OF p-HYPONORMAL OPERATORS

Bhagwati P. Duggal, In Ho Jeon\(^(*)\), and Eungil Ko

Abstract. In this paper we prove that if \(T\) is a \(k\)-th root of a \(p\)-hyponormal operator when \(T\) is compact or \(T^n\) is normal for some integer \(n > k\), then \(T\) is (generalized) scalar, and that if \(T\) is a \(k\)-th root of a semi-hyponormal operator and have the property \(\sigma(T)\) is contained in an angle \(\angle < \frac{2\pi}{k}\) with vertex in the origin, then \(T\) is subscalar.

1. Introduction

Let \(H\) and \(K\) be complex Hilbert spaces and let \(\mathcal{L}(H, K)\) denote the space of all bounded linear operators from \(H\) to \(K\). If \(H = K\), we write \(\mathcal{L}(H)\) in place of \(\mathcal{L}(H, K)\).

A bounded linear operator \(S\) on \(H\) is called *scalar* of order \(m\) if it has a spectral distribution of order \(m\), i.e., if there is a continuous unital morphism of topological algebras

\[
\Phi : C^m_0(\mathbb{C}) \rightarrow \mathcal{L}(H)
\]

such that \(\Phi(z) = S\), where as usual \(z\) stands for the identity function on \(\mathbb{C}\) and \(C^m_0(\mathbb{C})\) stands for the space of compactly supported functions on \(\mathbb{C}\), continuously differentiable of order \(m\), \(0 \leq m \leq \infty\). An operator is *subscalar* if it is similar to the restriction of a scalar operator to a closed invariant subspace.

Let \(d\mu(z)\), or simply \(d\mu\), denote the planar Lebesgue measure. Let \(D\) be a bounded open disc in \(\mathbb{C}\). We shall denote by \(L^2(D, H)\) the Hilbert

\(^(*)\) This work was supported by Korea Research Foundation Grant(KRF-2001-050-D0001).
space of measurable functions $f : D \to H$, such that

$$\|f\|_{2,D} = \left(\int_D \|f(z)\|^2 \, d\mu(z) \right)^{\frac{1}{2}} < \infty.$$

The space of functions $f \in L^2(D, H)$ which are analytic functions in D (i.e., $\partial f = 0$) is defined by

$$A^2(D, H) = L^2(D, H) \cap \mathcal{O}(D, H),$$

where $\mathcal{O}(D, H)$ denotes the Fréchet space of H-valued analytic functions on D with respect to uniform topology. $A^2(D, H)$ is called the Bergman space for D. Let us define a Sobolev type space, denoted $W^2(D, H)$.

$W^2(D, H)$ will be the space of those functions $f \in L^2(D, H)$ whose derivatives $\partial f, \partial^2 f$ in the sense of distributions still belong to $L^2(D, H)$. Endowed with the norm $\|f\|_{W^2} = \sum_{i=0}^2 \|\partial^i f\|_{2,D}^2$, $W^2(D, H)$ becomes a Hilbert space contained continuously in $L^2(D, H)$. Now, for $f \in C_0^2(\mathbb{C})$, let M_f denote the operator on $W^2(D, H)$ given by multiplication by f. This has a spectral distribution of order 2, defined by the functional calculus

$$\Phi_M : C_0^2(\mathbb{C}) \longrightarrow \mathcal{L}(W^2(D, H)), \quad \Phi_M(f) = M_f.$$

Therefore M_f is a scalar operator of order 2. Consider a bounded open disk D which contains $\sigma(T)$ and the quotient space

$$(1.1) \quad H(D) = W^2(D, H)/\langle T - z \rangle W^2(D, H)$$

endowed with the Hilbert space norm. We denote the class of a vector f or an operator A on $H(D)$ by \hat{f}, respectively \hat{A}. Let M_z be the operator of multiplication by z on $W^2(D, H)$. As noted above, M_z is a scalar of order 2 and has a spectral distribution Φ. Let $S \equiv \hat{M}_z$. Since $\langle T - z \rangle W^2(D, H)$ is invariant under every operator $M_f, f \in C_0^2(\mathbb{C})$, we infer that S is a scalar operator of order 2 with spectral distribution Φ.

Consider the natural map $V : H \longrightarrow H(D)$ defined by $Vh = \hat{1} \otimes h$, for $h \in H$, where $1 \otimes h$ denotes the constant function identically equal to h. In [11], Putinar showed that if $T \in \mathcal{L}(H)$ is a hyponormal operator then V is one-to-one and has closed range such that $VT = SV$, and so T is subscalar of order 2.

An operator $T \in \mathcal{L}(H)$ is said to be p-hyponormal, $0 < p \leq 1$, if $(T^*T)^p \geq (TT^*)^p$ where T^* is the adjoint of T. If $p = 1$, T is hyponormal and if $p = \frac{1}{2}$, T is called semi-hyponormal. Semi-hyponormal operators were introduced by Xia (see [12]) and there are many works on general p-hyponormal operators ([1], [3], [5], [6], [9]).
Löwner-Heinz’s inequality. Let \(A, B \in \mathcal{L}(H) \) be \(A \geq B \geq 0 \) and \(p \in (0, 1] \). Then
\[
A^p \geq B^p.
\]
This inequality gives the following implications:

\[
\begin{align*}
\text{hyponormality} & \implies \text{\(p \)-hyponormality} \ (\frac{1}{2} < p < 1) \\
& \implies \text{semi-hyponormality} \\
& \implies \text{\(p \)-hyponormality} \ (0 < p < \frac{1}{2}).
\end{align*}
\]

It is well known that all the above implications are strict (see [6] and [12]).

In this paper we prove that if \(T \) is a \(k \)-th root of a \(p \)-hyponormal operator when \(T \) is compact or \(T^n \) is normal for some integer \(n > k \), then \(T \) is (generalized) scalar, and that if \(T \) is a \(k \)-th root of a semi-hyponormal operator and has the property \(\sigma(T) \) is contained in an angle < \(2\pi/k \) with vertex in the origin, then \(T \) is subscalar. These results extend [8, Theorem 4.3].

2. Results

Theorem 2.1. Let \(T \) be a \(k \)-th root of a \(p \)-hyponormal operator. If \(T \) is compact or \(T^n \) is normal for some integer \(n > k \), then \(T \) is a (generalized) scalar operator.

Proof. First, we claim that \(T^k \) is normal. If \(T \) is compact, then that is straightforward, since \(T^k \) is compact and a compact \(p \)-hyponormal operator is normal ([5, Theorem 2]). If \(T^n \) is normal for some integer \(n > k \), then there exists an \(n \)-nilpotent operator \(T_0 \) and an operator \(T_1 \) which is quasi-similar to a normal operator \(N \) with \(\sigma(T_1) = \sigma(N) \) such that \(T = T_0 \oplus T_1 \) [7, Theorem 3.1]. Consider \(T^k = T_0^k \oplus T_1^k \). Clearly, \(T_0^k \) is nilpotent. Since the only quasi-nilpotent \(p \)-hyponormal operator is the zero operator, \(T_0^k = 0 \). Let \(X \) be a quasi-affinity such that \(T_1^k X = XN^k \). Applying the Putnam-Fuglede theorem for \(p \)-hyponormal operators ([3, Theorem 7]), it follows that \(T_1^k \) is normal. Hence \(T^k \) is normal. Now it follows from [2] and [7, Remark, p.141] that \(T \) is a (generalized) scalar operator. \(\square \)
Corollary 2.2. Let T be a k-th root of a p-hyponormal operator. If T is compact or T^n is normal for some integer $n > k$, then T has hyperinvariant subspaces.

Proof. Since T is a (generalized) scalar operator by Theorem 2.1, T is decomposable. Hence T has hyperinvariant subspaces. □

Theorem 2.3. Let T be a k-th root of a semi-hyponormal operator and have the property $\sigma(T)$ is contained in an angle $< 2\pi/k$ with vertex in the origin. Then T is subscalar of order 2.

We need the following lemmas to prove Theorem 2.3.

Lemma 2.4. ([11, Proposition 2.1]) For every bounded disk D in \mathbb{C} there is a constant C_D, such that for an arbitrary operator $T \in \mathcal{L}(H)$ and $f \in W^2(D, H)$ we have

$$
\|(I - P)f\|_{2,D} \leq C_D \left(\|(T - z)^* \partial f\|_{2,D} + \|(T - z)^* \partial^2 f\|_{2,D}\right),
$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto the Bergman space $A^2(D, H)$.

Lemma 2.5. ([9, Lemma 4]) Let T be a semi-hyponormal. Then for a $z \in \mathbb{C}$ and a sequence $f_n \in L^2(D, H)$

$$
\lim_{n \to \infty} \|(T - z)f_n\|_{2,D} = 0 \implies \lim_{n \to \infty} \|(T - z)^* f_n\|_{2,D} = 0.
$$

Proof of Theorem 2.3. Consider a bounded disk D which contains $\sigma(T)$ and $H(D)$ as in (1.1). Then we define the map $V : H \rightarrow H(D)$ by

$$
Vh = 1 \otimes h \left(\equiv 1 \otimes h + (T - z)W^2(D, H)\right),
$$

where $1 \otimes h$ denotes the constant function sending any $z \in D$ to h. As mentioned in section 1, to prove Theorem 2.3 it suffices to show that V is one-to-one and has closed range.

Let $h_n \in H$ and $f_n \in W^2(D, H)$ be sequences such that

$$
\lim_{n \to \infty} \|(T - z)f_n + 1 \otimes h_n\|_{W^2} = 0.
$$

Then equation (2.1) implies

$$
\lim_{n \to \infty} \|(T - z)\partial^i f_n\|_{2,D} = 0 \quad \text{for} \quad i = 1, 2.
$$
From (2.2), we get
\[
\lim_{n \to \infty} \| (T^k - z^k) \bar{\partial}^i f_n \|_{2,D} = 0 \quad \text{for} \quad i = 1, 2.
\]
Since \(T^k \) is semi-hyponormal, by Lemma 2.5 we have
\[
\lim_{n \to \infty} \| (T^{*k} - z^k) \bar{\partial}^i f_n \|_{2,D} = 0. \tag{2.3}
\]
Now we claim that
\[
\lim_{n \to \infty} \| (T - z) \bar{\partial}^i f_n \|_{2,D \setminus \sigma(T)} = 0. \tag{2.4}
\]
Indeed, since \(T - z \) is invertible for \(z \in D \setminus \sigma(T) \), the equation (2.2) implies that
\[
\lim_{n \to \infty} \| \bar{\partial}^i f_n \|_{2,D \setminus \sigma(T)} = 0.
\]
Therefore,
\[
\lim_{n \to \infty} \| (T - z)^* \bar{\partial}^i f_n \|_{2,D \setminus \sigma(T)} = 0.
\]
Also, since \(\sigma(T) \) is contained in an angle \(< \frac{2\pi}{k} \) with vertex in the origin, it is clear from the equation (2.3) that
\[
\lim_{n \to \infty} \| (T - z)^* \bar{\partial}^i f_n \|_{2,D} = 0.
\]
Thus Lemma 2.4 and equation (2.4) imply
\[
\lim_{n \to \infty} \| (I - P) f_n \|_{2,D} = 0,
\]
where \(P \) denotes the orthogonal projection of \(L^2(D, H) \) onto \(A^2(D, H) \). Then by (2.1)
\[
\lim_{n \to \infty} \| (T - z)P f_n + 1 \otimes h_n \|_{2,D} = 0.
\]
Let \(\Gamma \) be a curve in \(D \) surrounding \(\sigma(T) \). Then for \(z \in \Gamma \)
\[
\lim_{n \to \infty} \| P f_n(z) + (T - z)^{-1}(1 \otimes h_n) \| = 0, \quad \text{uniformly}.
\]
Hence
\[
\lim_{n \to \infty} \left\| \frac{1}{2\pi i} \int_\Gamma P f_n(z)dz + h_n \right\| = 0.
\]
But by Cauchy’s theorem,
\[
\int_\Gamma P f_n(z)dz = 0.
\]
Thus \(\lim_{n \to \infty} h_n = 0 \). Hence \(V \) is one-to-one and has closed range. This completes the proof. \(\Box \)
Corollary 2.6. Let T be a k-th root of a semi-hyponormal operator and have the property that $\sigma(T)$ is contained in an angle $< 2\pi/k$ with vertex in the origin. If $\sigma(T)$ has interior in the plane, then T has a non-trivial invariant subspace.

Proof. The corollary follows from Theorem 2.3 and [4]. □

We say that an operator $T - z$ on the space $\mathcal{O}(D, H)$ has Bishop’s property (β) if $T - z$ is one-to-one and has closed range for every disc D. Since every subscalar operator has Bishop’s property (β) ([10]), from Theorem 2.3 we have the following.

Corollary 2.7. Let T be as in Corollary 2.6. Then T has Bishop’s property (β).

Does Theorem 2.3 hold for k-th roots of arbitrary p-hyponormal operators? A partial answer is given by the following corollary.

Corollary 2.8. Let T be the k-th root of a p-hyponormal operator A, $0 < p < \frac{1}{2}$, such that $0 \notin \sigma(|A|^\frac{1}{2})$. If $\sigma(T)$ is contained in angle $< 2\pi/k$ with vertex in the origin, T is subscalar of order 2.

Proof. Letting A have the polar decomposition $A = U|A|$, it is seen that the operator $S = |A|^\frac{1}{2}U|A|^\frac{1}{2}$ is a semi-hyponormal operator such that $S = |A|^\frac{1}{2}A|A|^{-\frac{1}{2}}$. Since $S = |A|^\frac{1}{2}T^k|A|^{-\frac{1}{2}} = (|A|^\frac{1}{2}T|A|^{-\frac{1}{2}})^k$, S has a k-th root $T_0 = |A|^\frac{1}{2}T|A|^{-\frac{1}{2}}$ with spectrum contained in an angle $< 2\pi/k$ with vertex in the origin. Hence T_0, and so also T, is subscalar of order 2 by Theorem 2.3. □

References

k-th roots of p-hyponormal operators

Bhagwati P. Duggal, 8 Redwood Grove, Northfields Avenue, Ealing, London W5 4SZ, United Kingdom

E-mail: bpduggal@yahoo.co.uk

In Ho Jeon, Department of Mathematics, Ewha Women’s University, Seoul 120–750, Korea

Recent Address: Department of Mathematics, Seoul National University, Seoul 151–747, Korea

E-mail: jih@math.ewha.ac.kr

Eungil Ko, Department of Mathematics, Ewha Women’s University, Seoul 120–750, Korea

E-mail: eiko@ewha.ac.kr