EXISTENCE OF SOLUTIONS OF FUZZY DELAY
INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL
CONDITION

K.BALACHANDRAN AND K.KANAGARAJAN

Abstract. In this paper we prove the existence of solutions of fuzzy delay integro-differential equations with nonlocal condition. The results are obtained by using the fixed point principles.

1. Introduction

Several authors [3-7,11,12] have studied the fuzzy differential equations by using the H-differentiability for the fuzzy valued mappings of a real variable whose values are normal, convex, upper semi continuous and compactly supported fuzzy sets in R^n. Seikkala [10] defined the fuzzy derivative which is generalization of the Hukuhara derivative in [8]. For the Cauchy problem $x' = f(t, x)$, $x(t_0) = x_0$, the local existence theorems are proved in [11], and the existence theorems under compactness-type conditions are investigated in [12] when the fuzzy valued mapping f satisfies the generalized Lipschitz condition. Park et al [7] studied the fuzzy differential equation with nonlocal condition. Nieto [6] proved an existence theorem for fuzzy differential equations on the metric space (E^n, D). Balachandran and Prakash [2] proved the existence of solutions of fuzzy delay differential equations with nonlocal condition of the form

$$x' = f(t, x(\sigma_1(t)), x(\sigma_2(t)), \ldots, x(\sigma_n(t))), \quad t \in J = [0, a],$$

$$x(0) - g(t_1, t_2, \ldots, t_p, x(\cdot)) = x_0.$$

In this paper we study the existence of solutions of fuzzy delay integro-differential equations with nonlocal condition of the form

$$x'(t) = f\left(t, x(\sigma_1(t)), \int_0^t h\left(t, s, x(\sigma_2(s)), \int_0^s k(s, \tau, x(\sigma_3(\tau)))d\tau\right)ds\right),$$

$$x(0) - g(t_1, t_2, \ldots, t_p, x(\cdot)) = x_0,$$

where $f : J \times E^n \times E^n \to E^n$, $h : J \times J \times E^n \times E^n \to E^n$ and $k : J \times J \times E^n \to E^n$ are levelwise continuous functions, $g : J^p \times E^n \to E^n$ satisfies the Lipschitz condition

2000 Mathematics Subject Classification: 45G10.
Key words and phrases: Fuzzy delay integro-differential equations, Nonlocal condition.
© The Korean Society for Industrial and Applied Mathematics, 2005
and \(\sigma_i : J \to J \), \(i = 1, 2, 3 \) are continuous functions, \(\sigma_i(t) \leq t \) for all \(t \in J \). The existence of solutions for non fuzzy case of the problem (1)-(2) has been discussed in [5]. The symbol \(g(t_1, t_2, \cdots t_p, x(\cdot)) \) is used in the sense that in the place of \(\ell' \), we can substitute only elements of the set \(\{ t_1, t_2, \cdots , t_p \} \). For example, \(g(t_1, t_2, \cdots , t_p, x(\cdot)) \) can be defined by the formula
\[
g(t_1, t_2, \cdots , t_p, x(\cdot)) = c_1 x(t_1) + c_2 x(t_2) + \cdots + c_p x(t_p),
\]
where \(c_i (i = 1, 2, \cdots , p) \) are given constants.

2. Preliminaries

Let \(P_K(R^n) \) denote the family of all nonempty, compact, convex subsets of \(R^n \). Addition and scalar multiplication in \(P_K(R^n) \) are defined as usual. Let \(A \) and \(B \) be two nonempty bounded subsets of \(R^n \). The distance between \(A \) and \(B \) is defined by the Hausdorff metric
\[
d(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} ||a - b||, \sup_{b \in B} \inf_{a \in A} ||a - b|| \right\},
\]
where \(|| \cdot || \) denote the usual Euclidean norm in \(R^n \). Then it is clear that \((P_K(R^n), d) \) becomes a metric space. Let \(I = [t_0, t_0 + a] \subset R \) \((a > 0) \) be a compact interval and let \(E^n \) be the set of all \(u : R^n \to [0, 1] \) such that \(u \) satisfies the following conditions:

(i) \(u \) is normal, that is, there exists an \(x_0 \in R^n \) such that \(u(x_0) = 1 \),
(ii) \(u \) is fuzzy convex, that is, \(u(\lambda x + (1 - \lambda)y) \geq \min\{u(x), u(y)\} \), for any \(x, y \in R^n \) and \(0 \leq \lambda \leq 1 \),
(iii) \(u \) is upper semicontinuous,
(iv) \([u]^0 = \text{cl}\{x \in R^n : u(x) > 0\} \) is compact.

If \(u \in E^n \), then \(u \) is called a fuzzy number, and \(E^n \) is said to be a fuzzy number space. For \(0 < \alpha \leq 1 \), denote \([u]^{\alpha} = \{x \in R^n : u(x) \geq \alpha\} \). Then from (i)-(iv), it follows that the \(\alpha \)-level set \([u]^{\alpha} \in P_K(R^n) \) for all \(0 \leq \alpha \leq 1 \).

If \(g : R^n \times R^n \to R^n \) is a function, then using Zadeh’s extension principle we can extend \(g \) to \(E^n \times E^n \to E^n \) by the equation
\[
\tilde{g}(u, v)(z) = \sup_{z = g(x, y)} \min\{u(x), v(y)\}.
\]
It is well known that \([\tilde{g}(u, v)]^{\alpha} = g([u]^{\alpha}, [v]^{\alpha}) \) for all \(u, v \in E^n \), \(0 \leq \alpha \leq 1 \) and continuous function \(g \). Further, we have \([u + v]^{\alpha} = [u]^{\alpha} + [v]^{\alpha} \), \([ku]^{\alpha} = k[u]^{\alpha} \), where \(k \in R \). Define \(D : E^n \times E^n \to [0, \infty) \) by the relation \(D(u, v) = \sup_{0 \leq \alpha \leq 1} d([u]^{\alpha}, [v]^{\alpha}) \), where \(d \) is the Hausdorff metric defined in \(P_K(R^n) \). Then \(D \) is a metric in \(E^n \).

Further we know that [9]

(i) \((E^n, D) \) is a complete metric space,
(ii) \(D(u + w, v + w) = D(u, v) \) for all \(u, v, w \in E^n \),
(iii) \(D(\lambda u, \lambda v) = |\lambda| D(u, v) \) for all \(u, v \in E^n \) and \(\lambda \in R \).
EXISTENCE OF SOLUTIONS OF FUZZY DELAY INTEGRODIFFERENTIAL EQUATIONS

It can be proved that $D(u + v, w + z) \leq D(u, w) + D(v, z)$ for u, v, w and $z \in E^n$.

Definition 2.1. [3] A mapping $F : I \rightarrow E^n$ is strongly measurable if for all $\alpha \in [0, 1]$ the set-valued map $F_\alpha : I \rightarrow P_K(R^n)$ defined by $F_\alpha(t) = [F(t)]^\alpha$ is Lebesgue measurable when $P_K(R^n)$ has the topology induced by the Hausdorff metric d.

Definition 2.2. [3] A mapping $F : I \rightarrow E^n$ is said to be integrably bounded if there is an integrable function $h(t)$ such that $\|x(t)\| \leq h(t)$ for every $x(t) \in F_0(t)$.

Definition 2.3. The integral of a fuzzy mapping $F : I \rightarrow E^n$ is defined levelwise by $\int_I F(t)dt = \int_I F_\alpha(t)dt$. The set of all $\int_I f(t)dt$ such that $f : I \rightarrow R^n$ is a measurable selection for F_α for all $\alpha \in [0, 1]$.

Definition 2.4. [1] A strongly measurable and integrably bounded mapping $F : I \rightarrow E^n$ is said to be integrable over I if $\int_I F(t)dt \in E^n$.

Note that if $F : I \rightarrow E^n$ is strongly measurable and integrably bounded, then F is integrable. Further if $F : I \rightarrow E^n$ is continuous, then it is integrable.

Proposition 2.1. Let $F, G : I \rightarrow E^n$ be integrable and $c \in I, \lambda \in R$. Then

(i) $\int_0^{t_0+a} F(t)dt = \int_0^c F(t)dt + \int_{t_0+a}^t F(t)dt$,

(ii) $\int_{I} (F(t) + G(t))dt = \int_{I} F(t)dt + \int_{I} G(t)dt$,

(iii) $\int_{I} \lambda F(t)dt = \lambda \int_{I} F(t)dt$,

(iv) $D(F, G)$ is integrable,

(v) $D \left(\int_{I} F(t)dt, \int_{I} G(t)dt \right) \leq \int_{I} D(F(t), G(t))dt$.

Definition 2.5 A mapping $F : I \rightarrow E^n$ is Hukuhara differentiable at $t_0 \in I$ if for some $h_0 > 0$ the Hukuhara differences

$$F(t_0 + \Delta t) - h F(t_0), \quad F(t_0) - h F(t_0 - \Delta t)$$

exist in E^n for all $0 < \Delta t < h_0$ and there exists an $F'(t_0) \in E^n$ such that

$$\lim_{\Delta t \to 0^+} D((F(t_0 + \Delta t) - h F(t_0))/\Delta t, F'(t_0)) = 0$$

and

$$\lim_{\Delta t \to 0^+} D((F(t_0) - h F(t_0 - \Delta t))/\Delta t, F'(t_0)) = 0.$$

Here $F'(t)$ is called the Hukuhara derivative of F at t_0.

Definition 2.6. A mapping $F : I \rightarrow E^n$ is called differentiable at a $t_0 \in I$ if, for any $\alpha \in [0, 1]$, the set-valued mapping $F_\alpha(t) = [F(t)]^\alpha$ is Hukuhara differentiable at point t_0 with $DF_\alpha(t_0)$ and the family $\{DF_\alpha(t_0) : \alpha \in [0, 1]\}$ define a fuzzy number $F(t_0) \in E^n$.

If \(F : I \rightarrow E^n \) is differentiable at \(t_0 \in I \), then we say that \(F'(t_0) \) is the fuzzy derivative of \(F(t) \) at the point \(t_0 \).

Theorem 2.1. Let \(F : I \rightarrow E^n \) be differentiable. Denote \(F_\alpha(t) = [f_\alpha(t), g_\alpha(t)] \). Then \(f_\alpha \) and \(g_\alpha \) are differentiable and \([F'(t)]^\alpha = [f_\alpha'(t), g_\alpha'(t)] \).

Theorem 2.2. Let \(F : I \rightarrow E^n \) be differentiable and assume that the derivative \(F' \) is integrable over \(I \). Then, for each \(s \in I \), we have

\[
F(s) = F(a) + \int_a^s F'(t)dt.
\]

Definition 2.7. A mapping \(f : I \times E^n \rightarrow E^n \) is called levelwise continuous at a point \((t_0, x_0) \in I \times E^n \) provided, for any fixed \(\alpha \in [0, 1] \) and arbitrary \(\epsilon > 0 \), there exists a \(\delta(\epsilon, \alpha) > 0 \) such that

\[
d([f(t, x)]^\alpha, [f(t_0, x_0)]^\alpha) < \epsilon
\]

whenever \(|t - t_0| < \delta(\epsilon, \alpha) \) and \(d([x]^\alpha, [x_0]^\alpha) < \delta(\epsilon, \alpha) \) for all \(t \in I, x \in E^n \).

Corollary 2.1 [2] Suppose that \(F : I \rightarrow E^n \) is continuous. Then the function

\[
G(t) = \int_a^t F(s)ds, \quad t \in I
\]

is differentiable and \(G'(t) = F(t) \).

Now, if \(F \) is continuously differentiable on \(I \), then we have the following mean value theorem

\[
D(F(b), F(a)) \leq (b - a) \cdot \sup\{D(F'(t), 0), t \in I\}.
\]

As a consequence, we have that

\[
D(G(b), G(a)) \leq (b - a) \cdot \sup\{D(F(t), 0), t \in I\}.
\]

Theorem 2.3. Let \(X \) be a compact metric space and \(Y \) any metric space. A subset \(\Omega \) of the space \(C(X, Y) \) of continuous mappings of \(X \) into \(Y \) is totally bounded in the metric of uniform convergence if and only if \(\Omega \) is equicontinuous on \(X \), and \(\Omega(x) = \{ \phi(x) : \phi \in \Omega \} \) is a totally bounded subset of \(Y \) for each \(x \in X \).

3. Main Results

Definition 3.1. A mapping \(x : J \rightarrow E^n \) is a solution to the problem (1)-(2) if and only if it is levelwise continuous and satisfies the integral equation

\[
x(t) = x_0 + g(t_1, t_2, \cdots, t_p, x(\cdot)) + \int_0^t f\left(s, x(\sigma_1(s)), \int_0^s h\left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta)))d\theta\right)d\tau\right)ds
\]

for all \(t \in J \).
EXISTENCE OF SOLUTIONS OF FUZZY DELAY INTEGRODIFFERENTIAL EQUATIONS

Let \(M + Na = b \), a positive number, where

\[
M = \max D \left(f \left(t, x(\sigma_1(t)), \int_0^t h \left(t, s, x(\sigma_2(s)), \int_0^s k(s, \tau, x(\sigma_3(\tau)))d\tau \right) ds \right), 0 \right) \quad \text{and}
\]
\[
N = D(g(t_1, t_2, \cdots, t_p, x(\cdot)), 0), \quad 0 \in E^n.
\]

Let \(Y = \{ \xi \in E^n : H(\xi, x_0) \leq b \} \) be the space of continuous functions with \(H(\xi, \psi) = \sup_{0 \leq t \leq a} D(\xi(t), \psi(t)) \).

Theorem 3.1. Assume that:

1. The mapping \(f : J \times Y \to E^n \) is levelwise continuous in \(t \) on \(J \) and there exists a constant \(G_0 \) such that
 \[
 D(f(t, x_1, x_2), f(t, y_1, y_2)) \leq G_0[D(x_1, y_1) + D(x_2, y_2)]
 \]
2. The mapping \(h : J \times J \times Y \to E^n \) is levelwise continuous and there exists a constant \(G_1 \) such that
 \[
 D(h(t, s, x_1, x_2), h(t, s, y_1, y_2)) \leq G_1[D(x_1, y_1) + D(x_2, y_2)]
 \]
3. The mapping \(k : J \times J \times Y \to E^n \) is levelwise continuous and there exists a constant \(G_2 \) such that
 \[
 D(k(t, s, x_1, x_2), k(t, s, y_1, y_2)) \leq G_2 D(x, y)
 \]
4. There exists a constant \(G_3 \) such that for all \(x, y \in Y \) and \(\sigma_i : J \to J, \quad i = 1, 2, 3 \)
 \[
 D(x(\sigma_i(t)), y(\sigma_i(t))) \leq G_3 D(x(t), y(t))
 \]
5. \(g : J^p \times Y \to E^n \) is a function and there exists a constant \(G_4 > 0 \) such that
 \[
 D(g(t_1, t_2, \cdots, t_p, x(\cdot)), g(t_1, t_2, \cdots, t_p, y(\cdot))) \leq G_4 D(x, y).
 \]

Then there exists a unique solution \(x(t) \) of (1)-(2) defined on the interval \([0, a] \).

Proof. Define an operator \(\Phi : Y \to Y \) by

\[
\Phi x(t) = x_0 + g(t_1, t_2, \cdots, t_p, x(\cdot))
\]

\[
+ \int_0^t f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta)))d\theta \right) d\tau \right) ds.
\]

First, we show that \(\Phi : Y \to Y \) is continuous whenever \(\xi \in Y \) and that \(H(\Phi \xi, x_0) \leq b. \)

\[
D(\Phi \xi(t + h), \Phi \xi(t))
\]
\[
= D \left(x_0 + g(t_1, t_2, \cdots, t_p, \xi(\cdot)), x_0 + g(t_1, t_2, \cdots, t_p, \xi(\cdot)) \right)
\]
\[
+ \int_0^{t+h} f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds,
\]
\[
x_0 + g(t_1, t_2, \cdots, t_p, \xi(\cdot))
\]

\[\begin{align*}
&+ \int_0^t f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)) \right), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta))) d\theta \right) d\tau \right) \, ds \\
&\leq D \left(\int_0^{t+h} f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)) \right), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta))) d\theta \right) d\tau \right) \, ds, \\
&\quad + \int_0^t \left(\int_0^s f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)) \right), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta))) d\theta \right) d\tau \right) \, ds, \quad x_0 \\
&\leq \int_0^{t+h} D \left(f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)) \right), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta))) d\theta \right) d\tau \right) \, ds, \quad 0 \\
&\leq hM \to 0 \text{ as } h \to 0.
\end{align*} \]

That is, the map \(\Phi \) is continuous. Now

\[
D(\Phi \xi(t), x_0) = D(x_0 + g(t_1, t_2, \ldots, t_p, \xi(\cdot))) + \int_0^t f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)) \right), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta))) d\theta \right) d\tau \, ds \\
\leq D \left(f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)) \right), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta))) d\theta \right) d\tau \right) \, ds, \quad x_0 \\
\leq hM \to 0 \text{ as } h \to 0.
\]

Thus \(\Phi \) is a mapping from \(Y \) into \(Y \). Since \(C([0, a], E^n) \) is a complete metric space with the metric \(H \), we only show that \(Y \) is a closed subset of \(C([0, a], E^n) \). Let \(\{ \psi_n \} \) be a sequence in \(Y \) such that \(\psi_n \to \psi \in C([0, a], E^n) \) as \(n \to \infty \). Then

\[
D(\psi(t), x_0) \leq D(\psi(t), \psi_n(t)) + D(\psi_n(t), x_0),
\]

that is,

\[
H(\psi, x_0) = \sup_{0 \leq t \leq a} D(\psi(t), x_0) \leq H(\psi, \psi_n) + H(\psi_n, x_0) \leq \epsilon + b
\]

for sufficiently large \(n \) and arbitrary \(\epsilon > 0 \). So \(\psi \in Y \). This implies that \(Y \) is closed subset of \(C([0, a], E^n) \). Therefore \(Y \) is a complete metric space.

By using Proposition 2.1 and assumptions (i)-(v), we will show that \(\Phi \) is a contraction mapping. For \(\xi, \psi \in Y \),

\[
D(\Phi \xi(t), \Phi \psi(t)) = D \left(x_0 + g(t_1, t_2, \ldots, t_p, \xi(\cdot)) \right)
\]
EXISTENCE OF SOLUTIONS OF FUZZY DELAY INTEGRODIFFERENTIAL EQUATIONS

\[+ \int_0^t f \left(s, \xi(\sigma_1(s)), \int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds, \]

\[x_0 + g(t_1, t_2, \ldots, t_p, \psi(\cdot)) \]

\[+ \int_0^t f \left(s, \psi(\sigma_1(s)), \int_0^s h \left(s, \tau, \psi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \psi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds \]

\[\leq D \left(g(t_1, t_2, \ldots, t_p, \xi(\cdot)), g(t_1, t_2, \ldots, t_p, \psi(\cdot)) \right) \]

\[+ \int_0^t D \left(\int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds, \]

\[f \left(s, \psi(\sigma_1(s)), \int_0^s h \left(s, \tau, \psi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \psi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds \]

\[\leq G_4 D(\xi(\cdot), \psi(\cdot)) + G_0 \int_0^t D(\xi(\sigma_1(s)), \psi(\sigma_1(s)))ds \]

\[+ G_0 \int_0^t \left(\int_0^s h \left(s, \tau, \xi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \xi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds, \]

\[\int_0^s h \left(s, \tau, \psi(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, \psi(\sigma_3(\theta)))d\theta \right) d\tau \right) ds \]

\[\leq G_4 D(\xi(\cdot), \psi(\cdot)) + G_0 G_3 \int_0^t D(\xi(s), \psi(s))ds + G_0 G_1 G_3 \int_0^t \int_0^s D(\xi(\tau), \psi(\tau))d\tau ds \]

\[+ G_0 G_1 G_2 G_3 \int_0^t \int_0^s \int_0^\tau D(\xi(\theta), \psi(\theta))d\theta d\tau ds. \]

Then we obtain

\[H(\Phi_x, \Phi_y) \leq \sup_{0 \leq t \leq a} \left\{ G_4 D(\xi(\cdot), \psi(\cdot)) + G_0 G_3 \int_0^t D(\xi(s), \psi(s))ds \right. \]

\[+ G_0 G_1 G_3 \int_0^t \int_0^s D(\xi(\tau), \psi(\tau))d\tau ds \]

\[+ G_0 G_1 G_2 G_3 \int_0^t \int_0^s \int_0^\tau D(\xi(\theta), \psi(\theta))d\theta d\tau ds \right\} \]

\[\leq G_4 D(\xi(\cdot), \psi(\cdot)) + aG_0 G_3 D(\xi(t), \psi(t)) \]

\[+ a^2 G_0 G_1 G_3 D(\xi(t), \psi(t)) + a^3 G_0 G_1 G_2 G_3 D(\xi(t), \psi(t)) \]

\[\leq pH(\xi, \psi), \]

where the constant \(p = G_4 + G_0 G_3 a + G_0 G_1 G_3 a^2 + G_0 G_1 G_2 G_3 a^3 \). Taking sufficiently small \(a \) such that \(p < 1 \), we obtain \(\Phi \) to be a contraction mapping. Therefore \(\Phi \) has a unique fixed point \(x \in C([0, a], E^n) \) such that \(\Phi x = x \), that is,

\[x(t) = x_0 + g(t_1, t_2, \ldots, t_p, \psi(\cdot)) \]
Theorem 3.2. Let f, h, k, σ and g be as in Theorem 3.1. Denote by $x(t, x_0), y(t, y_0)$ the solutions of equation (1) corresponding to x_0, y_0, respectively. Then there exists constant $q > 0$ such that

$$H(x(\cdot, x_0), y(\cdot, y_0)) \leq qD(x_0, y_0)$$

for any $x_0, y_0 \in E^n$ and $q = 1/(1-p)$.

Proof. Let $x(t, x_0), y(t, y_0)$ be solutions of equations (1) corresponding to x_0, y_0, respectively. Then

$$D(x(t, x_0), y(t, y_0))$$

$$= D(x_0 + g(t_1, t_2, \ldots, t_p, x(\cdot))$$

$$+ \int_0^t f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta d\tau \right) ds, y_0 + g(t_1, t_2, \ldots, t_p, y(\cdot))$$

$$+ \int_0^t f \left(s, y(\sigma_1(s)), \int_0^s h \left(s, \tau, y(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, y(\sigma_3(\theta))) d\theta d\tau \right) ds \right)$$

$$\leq D(x_0, y_0) + D(g(t_1, t_2, \ldots, t_p, x(\cdot)), g(t_1, t_2, \ldots, t_p, y(\cdot)))$$

$$+ \int_0^t D f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta d\tau \right) ds, y_0 + g(t_1, t_2, \ldots, t_p, y(\cdot))$$

$$+ \int_0^t f \left(s, y(\sigma_1(s)), \int_0^s h \left(s, \tau, y(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, y(\sigma_3(\theta))) d\theta d\tau \right) ds \right)$$

$$\leq D(x_0, y_0) + G_4D(x(\cdot), y(\cdot)) + G_0G_3 \int_0^t D(x(s), y(s)) ds$$

$$+ G_0G_1G_3 \int_0^t \int_0^s D(x(\tau), y(\tau)) d\tau ds + G_0G_1G_2G_3 \int_0^t \int_0^s \int_0^\tau D(x(\theta), y(\theta)) d\theta d\tau d\sigma ds.$$
Proof. Since \(f, h, k \) are continuous and bounded and \(g \) is a continuous function there exists \(r \geq 0 \) such that
\[
D \left(f \left(t, x(\sigma_1(t)), \int_0^t h \left(s, x(\sigma_2(s)), \int_0^s k(s, \tau, x(\sigma_3(\tau))) d\tau \right) ds \right), \hat{0} \right) \leq r, \quad t \in J, x \in E^n.
\]

Let \(B \) be a bounded set in \(C(J, E^n) \). The set \(\Phi B = \{ \Phi x : x \in B \} \) is totally bounded if and only if it is equicontinuous and for every \(t \in J \), the set \(\Phi B(t) = \{ \Phi x(t) : t \in J \} \) is a totally bounded subset of \(E^n \). For \(t_0, t_1 \in J \) with \(t_0 \leq t_1 \) and \(x \in B \) we have that
\[
D(\Phi x(t_0), \Phi x(t_1)) = D \left(x_0 + g(t_1, t_2, \ldots, t_p, x(\cdot)) \right)
\]
\[
+ \int_0^{t_0} f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right) ds,
\]
\[
x_0 + g(t_1, t_2, \ldots, t_p, x(\cdot))
\]
\[
+ \int_{t_0}^{t_1} f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right) ds
\]
\[
\leq D \left(\int_0^{t_0} f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right) ds,
\]
\[
\int_0^{t_1} f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right) ds
\]
\[
\leq D \left(f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right), \hat{0} \right) ds
\]
\[
\leq |t_1 - t_0| \sup \left\{ D \left(\int_0^1 f \left(t, x(\sigma_1(t)), \int_0^t h \left(t, s, x(\sigma_2(s)), \int_0^s k(s, \tau, x(\sigma_3(\tau))) d\tau \right) ds \right), \hat{0} \right) \right\}
\]
\[
\leq |t_1 - t_0| \cdot r.
\]

This shows that \(\Phi B \) is equicontinuous. Now, for \(t \in J \) fixed, we have
\[
D(\Phi x(t), \Phi x(t')) \leq |t - t'| \cdot r, \quad \text{for every } t' \in J, x \in B.
\]

Consequently, the set \(\{ \Phi x(t) : x \in B \} \) is totally bounded in \(E^n \). By Ascoli’s theorem we conclude that \(\Phi B \) is a relatively compact subset of \(C(J, E^n) \). Then \(\Phi \) is compact, that is, \(\Phi \) transforms bounded sets into relatively compact sets.

We know that \(x \in C(J, E^n) \) is a solution of (1)-(2) if and only if \(x \) is a fixed point of the operator \(\Phi \) defined by (4).

Now, in the metric space \((C(J, E^n), H) \), consider the ball
\[
B = \{ \xi \in C(J, E^n), H(\xi, \hat{0}) \leq m \}, \quad m = a \cdot r.
\]

Thus, \(\Phi B \subset B \). Indeed, for \(x \in C(J, E^n) \),
\[
D(\Phi x(t), \Phi x(0)) = D \left(x_0 + g(t_1, t_2, \ldots, t_p, x(\cdot)) \right)
\]
\[+ \int_0^t f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right) ds, \\
\quad x_0 + g(t_1, t_2, \cdots, t_p, x(\cdot)) \]
\[\leq \int_0^t D \left(f \left(s, x(\sigma_1(s)), \int_0^s h \left(s, \tau, x(\sigma_2(\tau)), \int_0^\tau k(\tau, \theta, x(\sigma_3(\theta))) d\theta \right) d\tau \right), \hat{0} \right) ds \]
\[\leq |t| \cdot r \leq a \cdot r. \]

Therefore, defining \(\hat{0} : J \to E^n \), \(\hat{0}(t) = \hat{0}, \ t \in J \) we have
\[H(\Phi x, \Phi \hat{0}) = \sup \{ D(\Phi x(t), \Phi \hat{0}(t)) : t \in J \}. \]

Therefore \(\Phi \) is compact and, in consequence, it has a fixed point \(x \in B \). This fixed point is a solution of the initial value problem (1)-(2). \(\square \)

References

K.Balachandran:
Department of Mathematics Bharathiar University, Coimbatore 641 046, INDIA

E-mail: balachandran_k@lycos.com

K.Kanagarajan:
Karpagam College of Engineering, Coimbatore 641 032, INDIA