AVERAGE SHADOWING PROPERTIES
ON COMPACT METRIC SPACES

JONG-JIN PARK AND YONG ZHANG

Abstract. We prove that if a continuous surjective map f on a compact metric space X has the average shadowing property, then every point x is chain recurrent. We also show that if a homeomorphism f has more than two fixed points on S^1, then f does not satisfy the average shadowing property. Moreover, we construct a homeomorphism on a circle which satisfies the shadowing property but not the average shadowing property. This shows that the converse of the theorem 1.1 in [6] is not true.

1. Introduction

The shadowing property (also called the pseudo-orbit tracing property) is one of the most important notions in dynamical systems (see [1]). In [2], Blank introduced the notion of average-shadowing property (see [3]). In [5], Sakai proved that, on a closed C^∞ surface, the C^1 interior of the set of C^1 diffeomorphisms with the average-shadowing property is characterized by the set of Anosov diffeomorphisms. In [6], Zhang proved that whenever a homeomorphism f on a compact metric space X has the average-shadowing property, every point x in X is chain recurrent.

In this paper, we extend the property of homeomorphisms of the theorem 1.1 in [6] to the property of continuous surjective maps.

Theorem. [6] If a homeomorphism f on a compact metric space X has the average shadowing property, then every point x is chain recurrent. Moreover f has only one chain component which is the whole space.

Received October 25, 2005.
2000 Mathematics Subject Classification: 54H20, 58F99.
Key words and phrases: average shadowing property, δ-average-pseudo-orbit, shadowing property (pseudo orbit tracing property), δ-pseudo-orbit, chain recurrent.
And we show that if a homeomorphism f has more than two fixed points on S^1, then f does not satisfy the average shadowing property:

Theorem. Let S^1 be a circle and let $f : S^1 \to S^1$ be a self-homeomorphism. If $N[\text{fix}(f)] \geq 2$, then f does not satisfy the average shadowing property on S^1.

Moreover, we show that the converse of the theorem 1.1 in [6] is not true by constructing a homeomorphism on a circle which satisfy the shadowing property, but not the average shadowing property.

2. Notions

Let (X, d) be a compact metric space and let $f : X \to X$ be a homeomorphism of X onto itself. A subset $\text{Fix}(f)$ of X is called a fixed point set of f on X. Let $N[\text{Fix}(f)]$ denote the number of the subset $\text{Fix}(f)$. A sequence $\{x_n\}_{n \in \mathbb{Z}}$ is called an orbit of f if $x_{n+1} = f(x_n)$ for all $n \in \mathbb{Z}$ and a δ-pseudo-orbit of f if

$$d(f(x_n), x_{n+1}) \leq \delta,$$

for all $n \in \mathbb{Z}$.

We say that the homeomorphism f has the shadowing property if for each $\epsilon > 0$ there exists δ such that every δ-pseudo-orbit $\{x_n\}_{n \in \mathbb{Z}}$ is ϵ-shadowed by an orbit $\{f^n(y)\}_{n \in \mathbb{Z}}$ of for some $y \in X$, i.e.

$$d(f^n(y), x_n) \leq \epsilon$$

for all $n \in \mathbb{Z}$.

Let $x, y \in X$ be given. We say $x \xrightarrow{f} y$ if and only if for each $\delta > 0$, there is a δ-pseudo-orbit $\{x_l\}_{l=0}^l$ of some length $l+1$ of f, such that $x = x_0, x_1, \ldots, x_l = y$. It is said that $x \xrightarrow{\hat{L}} y$ if and only if $x \xrightarrow{L} y$ and $y \xrightarrow{L} x$. It is denoted $R(f) = \{x \in X | x \xrightarrow{\hat{L}} x\}$. It is easy to see that \hat{L} is an equivalent relation on $R(f)$. It is called an equivalent class with respect to L a chain component of f.

For $\delta > 0$, a sequence $\{x_i\}_{i=-\infty}^\infty$ of points in X is called an δ-average-pseudo-orbit of f if there is a natural number $N = N(\delta) > 0$ such that for all $n \geq N$, and $k \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{i=1}^{n} d(f(x_{i+k}), x_{i+k+1}) < \delta.$$

The average-pseudo-orbits are a certain generalization of the notion of pseudo-orbits. It is said that f has the average-shadowing property if
for all $\epsilon > 0$, there exists $\delta > 0$ such that every δ-average-pseudo-orbit $\{x_i\}_{i=-\infty}^{\infty}$ is ϵ-shadowed in average by some $z \in X$, that is
\[
\lim_{n \to \infty} \sup_{z \in X} \frac{1}{n} \sum_{i=1}^{n} \left| d(f^i(z), x_i) \right| < \epsilon.
\]

Let (X, d) be a compact metric space and let f be a continuous map of X onto itself. For $\delta > 0$, a sequence $\{x_i\}_{i=0}^{\infty}$ of points in X is called a δ-average pseudo-orbit of f if there is a natural number $N = N(\delta) > 0$ such that for all $n \geq N$ and $k \geq 0$,
\[
\frac{1}{n} \sum_{i=0}^{n-1} d(f(x_{i+k}), x_{i+k+1}) < \delta.
\]
We say that f has the average shadowing property if there is a metric d for X with the following property: for every $\epsilon > 0$, there is $\delta > 0$ such that every δ-average-pseudo-orbit $\{x_i\}_{i=0}^{\infty}$ is ϵ-shadowed in average by some point $y \in X$; that is
\[
\lim_{n \to \infty} \sup_{y \in X} \frac{1}{n} \sum_{i=0}^{n-1} d(f^i(y), x_i) < \epsilon.
\]
We use by $B(x, \epsilon)$ the open ball with the center x and the radius ϵ.

3. Average shadowing property

Consider a circle S^1 with coordinate $x \in [0, 1)$, and we denote by d the metric on S^1 induced by the usual distance on the real line. When we study the theory of shadowing and average shadowing, usually we only consider the homeomorphisms on S^1 which preserve orientation.

Let $\Pi(x) : \mathbb{R} \to S^1$ be the covering projection defined by the relations
\[
\Pi(x) \in [0, 1) \text{ and } \Pi(x) \equiv x(x \text{ mod } 1)
\]
with respect to the considered coordinates on S^1.

Let $f : S^1 \to S^1$ be a homeomorphism and let a homeomorphism $F : \mathbb{R} \to \mathbb{R}$ be a lifting of f.

Theorem 3.1. Let S^1 be a circle and let $f : S^1 \to S^1$ be a self-homeomorphism. If $N[fix(f)] \geq 2$, then f does not satisfy the average shadowing property on S^1.

Proof. Let S^1 be a circle and let $f : S^1 \to S^1$ be a homeomorphism. Take two fixed points $\{a, b\} \in Fix(f)$ and $\epsilon > 0$ such that $\min\{d(a, b), d(b, a)\} > 3\epsilon$. We denote D by the diameter of S^1, that
is, $D = \max_{(x, y) \in S^1 \times S^1} d(x, y)$. Consider $\delta > 0$. Take a natural number N such that $\frac{3D}{N} < \delta$. Define a sequence $\{x_i\}_{i=-\infty}^{\infty}$ by

$$x_i = \begin{cases} a, & \text{if } 0 \leq i \leq N \\ a, & \text{if } 3 \cdot 2^j \cdot N + 1 \leq i \leq 3 \cdot 2^{j+1} \cdot N, \ j = 0, 2, 4, \ldots \\ b, & \text{if } N + 1 \leq i \leq 3N \\ b, & \text{if } 3 \cdot 2^j \cdot N + 1 \leq i \leq 3 \cdot 2^{j+1} \cdot N, \ j = 1, 3, 5, \ldots \end{cases}$$

and

$$x_i = \begin{cases} a, & \text{if } -3N \leq i \leq -N - 1 \\ a, & \text{if } -3N \cdot 2^j + 1 \leq i \leq -3N \cdot 2^{j+1} - 1, \ j = 2, 4, 6, \ldots \\ b, & \text{if } -N \leq i \leq -1 \\ b, & \text{if } -3N \cdot 2^j + 1 \leq i \leq -3N \cdot 2^j - 1, \ j = 0, 1, 3, 5, \ldots \end{cases}$$

Then it is easy to see that for $n > N$ and $k \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{i=0}^{n-1} d(f(x_{i+k}), x_{i+k+1}) < \frac{1}{n} \cdot \frac{n}{N} \cdot 3D < \delta.$$

Thus $\{x_i\}_{i=0}^{\infty}$ is a δ-average-pseudo orbit of f. We assume that there is a point z in S^1 such that $\{x_i\}_{i=-\infty}^{\infty}$ is ϵ-shadowed in average by z. Then there is a natural number t and a fixed point c of f such that for $n > t$, $f^n(z) \in B(c, \epsilon)$ and since $d(a, b) > 3\epsilon$,

$$d(f^n(z), a) > \epsilon \text{ or } d(f^n(z), b) > \epsilon.$$

Hence

$$\lim_{n \to \infty} \sup_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} d(f^i(z), x_i) \geq \epsilon.$$

It is a contradiction and so we complete the proof of Theorem 3.1.

The following Corollary 3.2 shows that the converse of the theorem 1.1 in [6] is not true.

Corollary 3.2. There is a homeomorphism f on S^1 satisfying following:

1. any point x in S^1 is chain recurrent;
2. f does not satisfy the average shadowing property.

Proof. Let $F : [0, 1] \to [0, 1]$ be a homeomorphism defined by

$$F(t) = \begin{cases} t + \left(\frac{1}{2} - t\right)t & \text{if } 0 \leq t \leq \frac{1}{2} \\ t + (1-t)(t - \frac{1}{2}) & \text{if } \frac{1}{2} \leq t \leq 1. \end{cases}$$
\[F \text{ induces a homeomorphism } f : S^1 \to S^1. \text{ Obviously } a = \Pi(0) \text{ and } b = \Pi(1/2) \text{ are fixed points of } f. \text{ Then any point } x \text{ in } S^1 \text{ is chain recurrent of } f \text{ and by Theorem 3.1, } f \text{ does not satisfy the average shadowing property.} \]

The following Remark shows that there is a homeomorphism on \(S^1 \) which has the shadowing property, but not the average shadowing property.

Remark 3.3. Let \(F : [0, 1] \to [0, 1] \) be a homeomorphism defined by
\[
F(t) = \begin{cases}
 t + (1/2 - t)t & \text{if } 0 \leq t \leq 1/2 \\
 t - (t - 1/2)(1 - t) & \text{if } 1/2 \leq t \leq 1.
\end{cases}
\]

\(F \) induces a homeomorphism \(f : S^1 \to S^1. \text{ Then } a = \Pi(0) \text{ and } b = \Pi(1/2) \text{ are fixed points of } f. \text{ If } x \text{ is not } a \text{ and } b \text{ in } S^1, \text{ then } \lim_{n \to \infty} f^n(x) = b. \text{ By } [4], \text{ } f \text{ has the shadowing property. But the point } \Pi(1/2) \text{ is not chain recurrent point, and by the theorem 1.1 in } [6], \text{ } f \text{ does not satisfy the average shadowing property.} \]

We use the theorem 1.1 in [6] to drive another characterization of the average shadowing property.

Theorem 3.4. If a continuous surjective map \(f \) on a compact metric space \(X \) has the average shadowing property, then every point \(x \) is chain recurrent. Moreover \(f \) has only one chain component which is the whole space.

Proof. Let \((X, d)\) be a compact metric space and let \(f : X \to X \) be a continuous surjective map with the average shadowing property. It is sufficient to prove that for any two different points \(x, y \in X \), \(x \not\to y \).

Let \(x, y \) be any two different points of \(X \). We denote \(D \) by the diameter of \(X \), that is, \(D = \max_{(x, y) \in X \times X} d(x, y) \). If \(y \) is in the positive orbit of \(X \), then \(x \not\to y \). So we assume that \(y \) is not in the positive orbit of \(x \). For any \(\epsilon > 0 \), take \(0 < \epsilon \leq 4/9 \) such that if \(d(x, y) < 2\epsilon \), then \(d(f(x), f(y)) < \epsilon \). Let \(\delta = 3\epsilon > 0 \) be a number as in the definition of the average shadowing property \(f \), that is, every \(\delta \)-average-pseudo orbit \(\{x_i\}_{i=0}^{\infty} \) is \(\epsilon \)-shadowed in average by some \(z \) in \(X \). Fix a sufficient large integer \(N_0 > 0 \) which \(\frac{3D}{N_0} < \delta \).

Consider a subset \(S_1 \) of \(X \) which satisfy \(f(S_1) = \{y\} \). Take a point \(y_1 \in S_1 \). Then \(f(y_1) = y \), for \(y_1 \in S \). Again we consider a subset \(S_i \) of
X and take a point y_i in S_i satisfying
\[f(S_i) = \{y_{i-1}\}, \quad 1 < i \leq N_0 - 2. \]

Define a cyclic sequence $\{x_i\}_{i=0}^{\infty}$ by
\[
\begin{cases}
 x_i = f[i \mod 2N_0] & \text{if } [i \mod 2N_0] \in [0, N_0] \\
 x_i = y_{2N_0 - ([i \mod 2N_0] + 1)} & \text{if } [i \mod 2N_0] \in [N_0 + 1, 2N_0 - 2] \\
 x_i = y & \text{if } [i \mod 2N_0] = 2N_0 - 1.
\end{cases}
\]

Then for $n \geq N_0$ and $k > 0$,
\[
\frac{1}{n} \sum_{i=0}^{n-1} d(f(x_{i+k}), x_{i+k+1}) < \frac{1}{n} \cdot \frac{n}{N_0} \cdot 3D \leq \frac{3D}{N_0} < \delta.
\]

Thus $\{x_i\}_{i=0}^{\infty}$ is a cyclic δ-average-pseudo-orbit of f. Hence it is ϵ-shadowed in average by some $z \in X$, that is,
\[
\lim_{n \to \infty} \sup \frac{1}{n} \sum_{i=0}^{n-1} d(f^i(z), x_i) < \epsilon.
\]

Put $P_1 = \{x, f(x), \ldots, f^{N_0}(x)\}$. Then we have a following result.

Claim: There exists an infinite sequence $\{i_1, i_2, \ldots\}$, $i_s < i_k$ for $s < k$ such that
\[B(f^{i_s}(z), 2\epsilon) \cap P_1 \neq \emptyset \quad \text{and} \quad d(f^{i_s}(z), x_{i_s}) < 2\epsilon \quad \text{for all } i_j \in \{i_1, i_2, \ldots\}. \]

Otherwise, there exists a natural number N such that for all $i > N$,
\[d(f^i(z), x_i) \geq 2\epsilon. \]

Then
\[
\lim_{n \to \infty} \sup \frac{1}{n} \sum_{i=0}^{n-1} d(f^i(z), x_i) \geq 2\epsilon,
\]

which is a contradiction. Put $P_2 = \{y_{N_0-2}, \ldots, y_1, y\}$. Then similar result hold for P_2. There is an infinite sequence $\{l_1, l_2, \ldots\}$, $l_s < l_k$ if $s < k$ such that
\[B(f^{l_s}(z), 2\epsilon) \cap P_2 \neq \emptyset \quad \text{and} \quad d(f^{l_s}(z), x_{l_s}) < 2\epsilon. \]

Now choose
\[i_0 \in \{i_1, i_2, \ldots\} \quad \text{and} \quad l_0 \in \{l_1, l_2, \ldots\} \quad \text{with} \quad i_0 < l_0 \]

such that $x_{i_0} \in P_1$ and $x_{l_0} \in P_2$. Then
\[d(f^{i_0}(z), x_{i_0}) < 2\epsilon \quad \text{and} \quad d(f^{l_0}(z), x_{l_0}) < 2\epsilon. \]
By assuming
\[
\begin{cases}
x_{i_0} = f^{j_1}(x) & \text{for some } j_1 > 0 \\
x_{i_0} = y_{j_2} & \text{for some } j_2 > 0,
\end{cases}
\]
we have the following an \(\epsilon_0 \)-pseudo-orbit from \(x \) to \(y \)
\[
x, \ f(x), \ldots, f^{j_1}(x) = x_{i_0}, \\
f^{i_0+1}(z), \ f^{i_0+2}(z), \ldots, \ f^{i_0-1}(z) \\
x_{i_0} = y_{j_2}, \ y_{j_2-1}, \ldots, \ y.
\]
This proves \(x \xrightarrow{f} y \) and we complete the proof of Theorem 3.4. \(\square \)

References

Jong-Jin Park
Department of Mathematics
Chonbuk National University
Chonju 561-756, Korea
E-mail: jjpark46@chonbuk.ac.kr

Yong Zhang
Department of Mathematics
Suzhou University
Suzhou, China
E-mail: yongzhang@suda.edu.cn