SASAKIAN MANIFOLDS WITH QUASI-CONFORMAL CURVATURE TENSOR

Uday Chand De, Jae Bok Jun, and Abul Kalam Gazi

Reprinted from the Bulletin of the Korean Mathematical Society
Vol. 45, No. 2, May 2008

©2008 The Korean Mathematical Society
SASAKIAN MANIFOLDS WITH QUASI-CONFORMAL CURVATURE TENSOR

UDAY CHAND DE, JAE BOK JUN, AND ABUL KALAM GAZI

Abstract. The object of the paper is to study a Sasakian manifold with quasi-conformal curvature tensor.

1. Introduction

The notion of the quasi-conformal curvature tensor was given by Yano and Sawaki [11]. According to them a quasi-conformal curvature tensor \(\tilde{C} \) is defined by

\[
\tilde{C}(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y + g(Y,Z)Q_X - g(X,Z)Q_Y]
- \frac{r}{n} \left[\frac{a}{n - 1} + 2b \right] [g(Y,Z)X - g(X,Z)Y],
\]

where \(a \) and \(b \) are constants and \(R, S, Q, \) and \(r \) are the Riemannian curvature tensor of type (1,3), the Ricci tensor of type (0,2), the Ricci operator defined by \(g(QX, Y) = S(X, Y) \) and the scalar curvature of the manifold respectively. If \(a = 1 \) and \(b = -\frac{1}{n-2} \), then (1.1) takes the form

\[
\tilde{C}(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} [S(Y,Z)X - S(X,Z)Y + g(Y,Z)Q_X
- g(X,Z)Q_Y] + \frac{r}{(n-1)(n-2)} [g(Y,Z)X - g(X,Z)Y]
= C(X,Y)Z,
\]

where \(C \) is the conformal curvature tensor [4]. Thus the conformal curvature tensor \(C \) is a particular case of the tensor \(\tilde{C} \). For this reason \(\tilde{C} \) is called the quasi-conformal curvature tensor. A manifold \((M^n, g)(n > 3) \) shall be called quasi-conformally flat if the quasi-conformal curvature tensor \(\tilde{C} = 0 \). It is known [1] that the quasi-conformally flat manifold is either conformally flat if \(a \neq 0 \) or, Einstein if \(a = 0 \) and \(b \neq 0 \). Since, they give no restrictions for manifolds if \(a = 0 \) and \(b = 0 \), it is essential for us to consider the case of \(a \neq 0 \) or \(b \neq 0 \).

Received June 2, 2007.

2000 Mathematics Subject Classification. 53C15, 53C25.

Keywords and phrases. quasi-conformal curvature tensor, \(\eta \)-Einstein manifold.
An almost contact metric manifold is said to be an \(\eta\)-Einstein manifold if the Ricci tensor \(S\) satisfies the condition
\[
S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y),
\]
where \(a, b\) are certain scalars. It is known \([10]\) that in a Sasakian manifold \(a, b\) are constants. A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric \([8]\) if \(R(X, Y) \circ R = 0\), where \(R\) is the Riemannian curvature tensor and \(R(X, Y)\) is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors \(X, Y\). If a Riemannian manifold satisfies \(R(X, Y) \cdot \tilde{C} = 0\), where \(\tilde{C}\) is the quasi-conformal curvature tensor, then the manifold is said to be quasi-conformally semi-symmetric manifold.

It is known \([5]\) that a conformally flat Sasakian manifold is of constant curvature and a Weyl semi-symmetric Sasakian manifold is locally isometric with the unit sphere \(S^n(1)\) \([3]\). In the present paper we have studied quasi-conformally flat and quasi-conformally semi-symmetric Sasakian manifolds. At first we prove that a Sasakian manifold is quasi-conformally flat if and only if it is locally isometric with the unit sphere \(S^n(1)\). Also it is proved that a compact orientable quasi-conformally flat Sasakian manifold can not admit a non-isometric conformal transformation. Finally, we have shown that a Sasakian manifold is quasi-conformally flat if and only if it is quasi-conformally semi-symmetric.

2. Preliminaries

Let \(S\) and \(r\) denote respectively the Ricci tensor of type \((0,2)\) and the scalar curvature in a Sasakian manifold \((M^n, g)\). It is known that in a Sasakian manifold \(M^n\), the following relations hold \([6], [2], [7]\):

\[
\begin{align*}
(2.1) & \quad \phi(\xi) = 0 \\
(2.2) & \quad \eta(\xi) = 1 \\
(2.3) & \quad \phi^2 X = -X + \eta(X)\xi \\
(2.4) & \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \\
(2.5) & \quad g(\xi, X) = \eta(X) \\
(2.6) & \quad \nabla X \xi = -\phi X \\
(2.7) & \quad S(X, \xi) = (n-1)\eta(X) \\
(2.8) & \quad g(R(\xi, X)Y, \xi) = g(X, Y) - \eta(X)\eta(Y) \\
(2.9) & \quad R(\xi, X)\xi = -X + \eta(X)\xi \\
(2.10) & \quad g(R(X, Y)\xi, Z) = g(X, Z)\eta(Y) - g(Y, Z)\eta(X) \\
(2.11) & \quad (\nabla_X \phi)(Y) = R(\xi, X)Y
\end{align*}
\]

for any vector fields \(X, Y\).

The above results will be used in the next section.
3. η-Einstein Sasakian manifold

Let l^2 be the square of the length of the Ricci tensor, then

\begin{equation}
(3.1) \quad l^2 = \sum_{i=1}^{n} S(Qe_i, e_i),
\end{equation}

where Q is the symmetric endomorphism of the tangent space at a point corresponding to the Ricci tensor S and $\{e_i\}$, $i = 1, 2, \ldots, n$, is an orthonormal basis of the tangent space at any point. Now putting $X = Y = \{e_i\}$ in (1.2), and taking summation over i, $1 \leq i \leq n$, we get

\begin{equation}
(3.2) \quad r = na + b,
\end{equation}

where r is the scalar curvature. Again from (1.2) we obtain

\begin{equation}
(3.3) \quad S(\xi, \xi) = a + b.
\end{equation}

Now we get from (1.2) with the help of (3.1), (3.2) and (3.3)

\begin{equation}
(3.4) \quad l^2 = (n - 1)a^2 + (a + b)^2.
\end{equation}

Since the scalars a and b are constants of an η-Einstein Sasakian manifold, it follows from (3.2) that r is constant and so also is the length of the Ricci tensor. Next we suppose that the manifold under consideration admits a non-isometric conformal motion generated by a vector field X. Since l^2 is constant, it follows that

\begin{equation}
(3.5) \quad L_Xl^2 = 0,
\end{equation}

where L_X denotes Lie-differentiation with respect to X. Now it is known [9] that if a compact Reimannian manifold $M^n(n > 2)$ with constant scalar curvature admits an infinitesimal nonisometric conformal transformation X such that $L_Xl^2 = 0$, then M is isometric to a sphere. But a sphere is an Einstein manifold. Hence we can state the following:

Theorem 3.1. A compact orientable η-Einstein Sasakian manifold does not admit a nonisometric conformal transformation.

4. Quasi-conformally flat Sasakian manifold

If the manifold under consideration is quasi-conformally flat, then we have from (1.1)

\begin{equation}
(4.1) \quad 'R(X, Y, Z, W) = \frac{b}{a}[S(X, Z)g(Y, W) - S(Y, Z)g(X, W) + S(Y, W)g(X, Z) - S(X, W)g(Y, Z)] + \frac{r}{na} \left(\frac{a}{n - 1} + 2b \right) [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)],
\end{equation}

where a and b are constants and $'R(X, Y, Z, W) = g(R(X, Y)Z, W)$.
Now putting $Z = \xi$ in (4.1) and using (2.2), (2.5), (2.7) and (2.10) we get
\begin{align*}
g(X, W)\eta(Y) - g(Y, W)\eta(X) \\
= \frac{b}{a}[(n-1)g(Y, W)\eta(X) - (n-1)g(X, W)\eta(Y)] \\
+ S(Y, W)\eta(X) - S(X, W)\eta(Y)] \\
+ \frac{r}{na} [\frac{a}{n-1}] \\
+ 2b [g(X, W)\eta(Y) - g(Y, W)\eta(X)].
\end{align*}
\tag{4.2}
Again putting $X = \xi$ in (4.2) and using (2.2), (2.5) and (2.7) it follows that
\begin{equation}
S(Y, W) = Ag(Y, W) + B\eta(Y)\eta(W),
\end{equation}
where
\begin{equation}
A = [-n-1 + \frac{r}{nb}(\frac{a}{n-1} + 2b) - \frac{a}{b}]
\end{equation}
and
\begin{equation}
B = [2(n-1) - \frac{r}{nb}(\frac{a}{n-1} + 2b) + \frac{a}{b}].
\end{equation}
Here $A + B = (n-1)$. This leads to the following theorem:

Theorem 4.1. A quasi-conformally flat Sasakian manifold is an η-Einstein manifold.

Now from Theorem 3.1 we can state the following:

Corollary 4.1. A compact orientable quasi-conformally flat Sasakian manifold can not admit a nonisometric conformal transformation.

Putting $Y = W = \{e_i\}$ in (4.3) and taking summation over i, $1 \leq i \leq n$, we get
\begin{equation}
r = nA + B.
\end{equation}
Now with the help of (4.4) and (4.5) the equation (4.6) gives
\begin{equation}
[(n-2) + \frac{a}{b}]\frac{r}{n} + (1-n) = 0.
\end{equation}
Hence either
\begin{equation}
b = \frac{a}{2-n},
\end{equation}
or,
\begin{equation}
r = n(n-1).
\end{equation}

If $b = \frac{a}{2-n}$ then putting it into (1.1) we get
\begin{equation}
\tilde{C}(X, Y)Z = aC(X, Y)Z,
\end{equation}
where $C(X, Y)Z$ denotes the Weyl conformal curvature tensor. So the quasi-conformally flatness and conformally flatness are equivalent in this case. A conformally flat Sasakian manifold $(M^n, g)(n \geq 5)$ is of constant curvature. But a manifold of constant curvature is conformally flat. Hence a Sasakian
manifold is conformally flat if and only if it is locally isometric with a unit sphere \(S^n(1) \). So in this case \(M^n \) is locally isometric to the unit sphere.

If \(r = n(n - 1) \), then from (4.3), (4.4) and (4.5) we obtain

\[
S(Y, W) = (n - 1)g(Y, W).
\]

This implies that \(M^n \) is an Einstein manifold. So putting (4.8), (4.9) and (4.11) into (4.1) we obtain

\[
R(X, Y, Z, W) = g(X, W)g(Y, Z) - g(X, Z)g(Y, W).
\]

Then \(M^n \) is of constant curvature +1. Hence it is locally isometric with the unit sphere \(S^n(1) \). If \(M^n \) is locally isometric to the unit sphere \(S^n(1) \) then it is easy to see that \(M^n \) is quasi-conformally flat. This leads to the following theorem:

Theorem 4.2. Let \((M^n, g)(n \geq 5)\) be a Sasakian manifold. Then \(M^n \) is quasi-conformally flat if and only if \(M^n \) is locally isometric to the unit sphere \(S^n(1) \).

5. Sasakian manifolds satisfying \(R(X, Y) \cdot \tilde{C} = 0 \)

In this section we consider a Sasakian manifold \(M^n \) satisfying the condition

\[
R(X, Y) \cdot \tilde{C} = 0.
\]

Then we obtain from (1.1) by using (2.5), (2.7) and (2.10)

\[
\eta(\tilde{C}(X, Y)Z) = [a + b(n - 1) - \frac{r}{n}\left(\frac{a}{n - 1} + 2b\right)]g(Y, Z)\eta(X)
- g(X, Z)\eta(Y)] + b[S(Y, Z)\eta(X) - S(X, Z)\eta(Y)].
\]

For \(Z = \xi \), we get from (5.2)

\[
\eta(\tilde{C}(X, Y)\xi) = 0.
\]

Again putting \(X = \xi \) in (5.2) we get

\[
\eta(\tilde{C}(\xi, Y)Z) = [a + b(n - 1) - \frac{r}{n}\left(\frac{a}{n - 1} + 2b\right)]g(Y, Z)
- \eta(Y)\eta(Z)] + b[S(Y, Z) - (n - 1)\eta(Y)\eta(Z)].
\]

In virtue of (5.1) we get

\[
R(X, Y)\tilde{C}(U, V)W - \tilde{C}(R(X, Y)U, V)W
- \tilde{C}(U, R(X, Y)V)W - \tilde{C}(U, V)R(X, Y)W = 0,
\]

which implies that

\[
'\tilde{C}(U, V, W, Y) - \eta(Y)\eta(\tilde{C}(U, V)W) + \eta(U)\eta(\tilde{C}(Y, V)W)
+ \eta(V)\eta(\tilde{C}(U, Y)W) + \eta(W)\eta(\tilde{C}(U, V)Y) - g(Y, U)\eta(\tilde{C}(\xi, V)W)
- g(Y, V)\eta(\tilde{C}(U, \xi)W) - g(Y, W)\eta(\tilde{C}(U, V)\xi) = 0,
\]

where \('\tilde{C}(U, V, W, Y) = g(\tilde{C}(U, V)W, Y) \).
Putting $U = Y$ in (5.6) and with the help of (5.2) and (5.3) we get
\begin{equation}
\begin{split}
\tilde{\mathcal{C}}(U, V, W, U) + \eta(W)\eta(\tilde{\mathcal{C}}(U, V)U) \\
- g(U, U)\eta(\tilde{\mathcal{C}}(\xi, V)W) - g(U, V)\eta(\tilde{\mathcal{C}}(U, \xi)W) = 0.
\end{split}
\end{equation}
Now putting $U = \{e_i\}$, where $\{e_i\}, i = 1, 2, \ldots, n$, be an orthonormal basis of the tangent space at each point of the manifold, in (5.7) and taking the summation over i, $1 \leq i \leq n$, and using (5.2), (5.4) we get
\begin{equation}
S(V, W) = \lambda g(V, W) + \mu \eta(V)\eta(W),
\end{equation}
where
\begin{equation}
\lambda = \frac{-br + (n - 1)^2b + (n - 1)a}{a - b}
\end{equation}
and
\begin{equation}
\mu = \frac{b[r - n(n - 1)]}{a - b}.
\end{equation}
Hence (5.8) leads to the following theorem:

Theorem 5.1. A quasi-conformally semi-symmetric Sasakian manifold is an η-Einstein manifold.

Now contracting (5.8) we get
\begin{equation}
r = n\lambda + \mu.
\end{equation}
By (5.9) and (5.10) the equation (5.11) gives
\begin{equation}
[a + (n - 2)b][r - n(n - 1)] = 0.
\end{equation}
Therefore, either
\begin{equation}
b = \frac{a}{2 - n} \quad \text{or} \quad r = n(n - 1).
\end{equation}
From (5.9) and (5.12) we obtain
\begin{equation}
\lambda = (n - 1).
\end{equation}
By (5.10) and (5.12) we get
\begin{equation}
\mu = 0.
\end{equation}
So, from (5.8), (5.13) and (5.14) we have
\begin{equation}
S(V, W) = (n - 1)g(V, W).
\end{equation}
Therefore, M^n is an Einstein manifold. Now with the help of (5.12) and (5.15) the equations (5.2) and (5.4) imply that
\begin{equation}
\eta(\tilde{\mathcal{C}}(U, V)W) = 0
\end{equation}
and
\begin{equation}
\eta(\tilde{\mathcal{C}}(\xi, U)V) = 0,
\end{equation}
\begin{equation}
\eta(\tilde{\mathcal{C}}(U, V)W) = 0
\end{equation}
and
\begin{equation}
\eta(\tilde{\mathcal{C}}(\xi, U)V) = 0,
\end{equation}
where
respectively. So using (5.16), (5.17) and (5.3) into the equation (5.6) we get (5.18)
\[\tilde{\mathcal{C}}(U, V, W, Y) = 0. \]
Therefore, \(M^n \) is quasi-conformally flat. Then it is trivially quasi-conformally semi-symmetric. So we have the following result:

Theorem 5.2. Let \((M^n, g)(n > 3)\) be a Sasakian manifold. Then \(M^n \) is quasi-conformally flat if and only if it is quasi-conformally semi-symmetric.

References

Uday Chand De
Department of Mathematics
University of Kalyani
Kalyani 741235
West Bengal, India
E-mail address: uc_de@yahoo.com

Jae Bok Jun
Department of Mathematics
College of Natural Science
Kook-Min University
Seoul 136-702, Korea
E-mail address: jbjun@Kookmin.ac.kr

Abul Kalam Gazi
Department of Mathematics
University of Kalyani
Kalyani 741235
West Bengal, India