Some open problems in \(q \)-series

Dongsu Kim

Department of Mathematics
Korea Advanced Institute of Science and Technology
Taejon, 305-701
Republic of Korea

September 14, 1997

1 Introduction

A finite nonincreasing sequence of positive integers, \(\lambda = \lambda_1 \lambda_2 \cdots \lambda_l \), is called an integer partition of \(n \), where \(n = \sum_{i=1}^{l} \lambda_i \). We follow standard notations in [1]. The length of a partition \(\lambda \) is the number of its parts, denoted \(l(\lambda) \). Let \(|\lambda| \), called the size of \(\lambda \), denote the number which \(\lambda \) is a partition of. Let \(p(n) \) denote the number of all partitions of \(n \). Then we have

\[
\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q; q)_\infty},
\]

where \((a; q)_\infty = \prod_{i=0}^{\infty} (1 - aq^i) \). Let \((a; q)_n = \prod_{i=0}^{n-1} (1 - aq^i) \).

In the following sections we present some open problems proposed by George Andrews while he has been visiting KAIST from August 10 to August 23, 1997.

2 Alder conjecture

Define two sequences \(\{C_d(n)\}_{n \geq 0} \) and \(\{c_d(n)\}_{n \geq 0} \) as follows:

\[
\sum_{n=0}^{\infty} \frac{q^d(\binom{d}{2})+n}{(q; q)_n} = \sum_{n=0}^{\infty} C_d(n)q^n,
\]

\[
\frac{1}{(q; qq^{d+3})_{\infty}(q^{d+2}; q^{d+3})_{\infty}} = \sum_{n=0}^{\infty} c_d(n)q^n.
\]
Conjecture 2.1 \[C_d(n) \geq c_d(n) \text{ for each } d \geq 1 \text{ and each } n \geq 0. \]

It is not difficult to show that \(C_d(n) \) is the number of partitions of \(n \) with differences between parts \(\geq d \) and \(c_d(n) \) is the number of partitions of \(n \) with parts \(\equiv 1 \text{ or } d + 2 \text{ mod } d + 3 \). The case \(d = 1, C_1(n) = c_1(n) \), is the Euler identity, i.e.

\[
(-q; q)_\infty = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q; q^2)_{\infty}},
\]

and the case \(d = 2, C_2(n) = c_2(n) \), is the first Rogers-Ramanujan identity, i.e.

\[
\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q; q^5)_{\infty}(q^4; q^5)_{\infty}},
\]

and the case \(d = 3, C_3(n) \geq c_3(n) \), is the Schur identity.

The conjecture is proved for \(d = 2^s - 1, s \geq 4 \) and the inequality is proved for any fixed \(d \), if \(n \) is sufficiently large.

3 Borwein conjecture

Peter Borwein proved that for any prime \(p \), the coefficients \(a_n \) and \(a_{n+p} \) have the same sign, where

\[
\frac{(q; q)_\infty}{(q^p; q^p)_\infty} = \sum_{n=0}^{\infty} a_n q^n.
\]

Borwein observed the following:

Conjecture 3.1 If

\[
\frac{(q; q)_3n}{(q^3; q^3)_n} = A_n(q^3) - qB_n(q^3) - q^2C_n(q^3),
\]

then each polynomial \(A_n(x) \), \(B_n(x) \) and \(C_n(x) \) has nonnegative coefficients.

We can extend this to the following:

Conjecture 3.2 If

\[
(1 - q)(1 - q^2)\frac{(zq^3; q^2)_3n}{(zq^3; q^3)_n} = A_n(z, q^3) - qB_n(z, q^3) - q^2C_n(z, q^3),
\]

then each polynomial, in \(x \) and \(z \), \(A_n(z, x) \), \(B_n(z, x) \) and \(C_n(z, x) \) has nonnegative coefficients.

In addition to this, the same thing happens with the prime 5.
Conjecture 3.3 Let
\[
\frac{(q; q)_n}{(q^5; q^5)_n} = A_n(q^5) - q B_n(q^5) - q^2 C_n(q^5) - q^3 D_n(q^5) - q^4 E_n(q^5).
\]

Then each polynomial \(A_n(x) \), \(B_n(x) \), \(C_n(x) \), \(D_n(x) \) and \(E_n(x) \) has nonnegative coefficients.

The primes 3 and 5 are special. 7 doesn’t give a nice generalization.

References:
2. D. Bressoud and D. Stanton

4 Rogers-Ramanujan identities

Rogers-Ramanujan identities assert that
\[
\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q, q^2; q^5)_\infty},
\]
\[
\sum_{n=0}^{\infty} \frac{q^{n^2+n}}{(q; q)_n} = \frac{1}{(q^2, q^3; q^5)_\infty}.
\]

The first identity implies that the number of \(n \) into parts that differ by at least 2 equals the number of partitions of \(n \) into parts that are 1 or 4 mod 5. There is a combinatorial proof of this by Garcia and Milne, using the involution principle.

Problem. Is there a bijective proof of this identity that doesn’t rely on the involution principle?

5 More open problems

1. Problem. Can you find infinitely many pairs \((S, T)\) of sets \(S \) and \(T \) of positive integers so that for each \(n \geq 1 \), the number of partitions of \(n \) into elements in \(S \) equals the number of partitions of \(n - 1 \) into elements in \(T \). In other words
\[
\prod_{i \in S} \frac{1}{1 - q^i} = 1 + \prod_{i \in T} \frac{q}{1 - q^i}.
\]

2. In the paper, Invent. Math. 91 (1988), 391–407, it is shown that
\[
\sum_{n=0}^{\infty} \frac{q^{\frac{n+1}{2}}}{(-q; q)_n}
\]
has asymptotically all coefficients a zero. However every integer appears as a coefficient infinitely many times.

Problem. *Is there a simple combinatorial proof of this?*

References

